线性代数-行列式

· Determinant

Fragment 1 二阶行列式

线性代数研究步骤:引入问题 \rightarrow 概念方法 \rightarrow 解决问题

Q:如何进行线性方程组求解?

给出nn元线性方程:

{a11x1+a12x2++a1nxn=B1a21x1+a22x2++a2nxn=B2am1x1+am2x2++amnxn=Bm\begin{equation*} \begin{cases} a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = B_1 \\ a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = B_2 \\ \ldots \\ a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n = B_m \end{cases} \end{equation*}

nn个未定元: x1,,xnx_1, \ldots, x_naija_{ij}BiB_i 为常数,方程个数与未定元个数不一定相等。

而在第三章我们才能给出这个问题的解。第一章主要讨论 m=nm=n 的情况。

n=2n=2 时,二元线性方程组

{a11x1+a12x2=b1a21x1+a22x2=b2\begin{equation*} \begin{cases} a_{11} x_1 + a_{12} x_2 = b_1 \\ a_{21} x_1 + a_{22} x_2 = b_2 \end{cases} \end{equation*}

(1) ×Q22(2)×Q12:(a11a22a21a12)x1=b1a22b2a12\times Q_{22} - (2) \times Q_{12}: (a_{11} a_{22} - a_{21} a_{12}) x_1 = b_1 a_{22} - b_2 a_{12}

写法不够简洁。由此引入二阶行列式

· 定义

/Define/

定义二阶行列式:

a11a12a21a22=a11a22a21a12\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| = a_{11} a_{22} - a_{21} a_{12}

x1=a11a12b1b2a11a12a21a22,x2=a11b1a21b2a11a12a21a22\Rightarrow x_1 = \frac{\left| \begin{array}{cc} a_{11} & a_{12} \\ b_1 & b_2 \end{array} \right|}{\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|}, \quad x_2 = \frac{\left| \begin{array}{cc} a_{11} & b_1 \\ a_{21} & b_2 \end{array} \right|}{\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|}

定事实上二阶行列式并非人为定义,而是解方程组中自然出现的。

n=3n=3 时,三元线性方程组

{a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3\begin{equation*} \begin{cases} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1 \\ a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2 \\ a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3 \end{cases} \end{equation*}

用待定系数法:(1) ×V+(2)×U+(3)×W\times V + (2) \times U + (3) \times W

{(a11U+a21V+a31W)x1=b1U+b2V+b3Wa12U+a22V+a32W=0a13U+a23V+a33W=0\begin{equation*} \begin{cases} (a_{11}U + a_{21}V + a_{31}W)x_1 = b_1U + b_2V + b_3W \\ a_{12}U + a_{22}V + a_{32}W = 0 \\ a_{13}U + a_{23}V + a_{33}W = 0 \end{cases} \end{equation*}

化简为二元线性方程组

{a12UW+a22VW=a32a13UW+a23VW=a33\begin{equation*} \begin{cases} a_{12} \frac{U}{W} + a_{22} \frac{V}{W} = -a_{32} \\ a_{13} \frac{U}{W} + a_{23} \frac{V}{W} = -a_{33} \end{cases} \end{equation*}

不妨令 U=a22a23a32a33U = \left| \begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array} \right|, V=a12a13a32a33V = -\left| \begin{array}{cc} a_{12} & a_{13} \\ a_{32} & a_{33} \end{array} \right|, W=a12a13a22a23W = \left| \begin{array}{cc} a_{12} & a_{13} \\ a_{22} & a_{23} \end{array} \right|

通过上述方程组解出 UU, VV, WW

通过如上运算,我们可以给出三阶行列式的定义

/Define/

定义三阶行列式(递归定义)

a11a12a13a21a22a23a31a32a33=defa11a22a23a32a33a21a12a13a32a33+a31a12a13a22a23\begin{equation*} \left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \right| \quad \stackrel{\text{def}}{=} \quad a_{11} \left| \begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \\ \end{array} \right| a_{21} \left| \begin{array}{cc} a_{12} & a_{13} \\ a_{32} & a_{33} \\ \end{array} \right| +a_{31} \left| \begin{array}{cc} a_{12} & a_{13} \\ a_{22} & a_{23} \\ \end{array} \right| \end{equation*}

如下的展开式称为 “组合定义”

=a11a22a33+a21a32a13+a31a12a23a11a32a23a21a12a33a31a22a13= a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23}\\ - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33} - a_{31}a_{22}a_{13}

利用三阶行列式写三元线性方程组

x1=b1a12a13b2a22a23b3a32a33a11a12a13a21a22a23a31a32a33,x2=a11b1a13a21b2a23a31b3a33a11a12a13a21a22a23a31a32a33,x3=a11a12b1a21a22b2a31a32b3a11a12a13a21a22a23a31a32a33\begin{equation*} x_1 = \frac{\left| \begin{array}{ccc} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \\ \end{array} \right|}{\left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \right|} \quad , \quad x_2 = \frac{\left| \begin{array}{ccc} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \\ \end{array} \right|}{\left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \right|} \quad , \quad x_3 = \frac{\left| \begin{array}{ccc} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \\ \end{array} \right|} {\left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \right|} \end{equation*}

这种写法仍旧过于复杂,那我们就需要引入概念简化三阶行列式写法

/Define/

定义:A|A| 为三阶行列式,将元素 aija_{ij} 所在的第 ii 行,第 jj 列元素删除,剩下元素按原来顺序构成的二阶行列式称为 aija_{ij} 的余子式,记为 MijM_{ij}

可以重写递规定义:A=a11M11a21M21+a31M31|A| = a_{11}M_{11} - a_{21}M_{21} + a_{31}M_{31} (称为第一列展开)

/example/

112203132=1×03322×1232+(1)×1203=4\begin{align*} \left| \begin{array}{ccc} 1 & -1 & 2 \\ 2 & 0 & 3 \\ -1 & -3 & 2 \\ \end{array} \right| = 1 \times \left| \begin{array}{cc} 0 & 3 \\ -3 & 2 \\ \end{array} \right| - 2 \times \left| \begin{array}{cc} -1 & 2 \\ -3 & 2 \\ \end{array} \right| + (-1) \times \left| \begin{array}{cc} -1 & 2 \\ 0 & 3 \\ \end{array} \right| = 4 \\ \end{align*}

aa2+a+110aa1000=a×aa100=a3+a1\left| \begin{array}{ccc} a & a^2+a+1 & 1 \\ 0 & -a & a-1 \\ 0 & 0 & 0 \\ \end{array} \right| = a \times \left| \begin{array}{cc} -a & a-1 \\ 0 & 0 \\ \end{array} \right| = a^3 + a - 1 \\

关于三阶行列式,还有一些概念,以后会用到:

/Define/

定义:A=a11a12a13a21a22a23a31a32a33|A| = \left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right|a11,a22,a33a_{11}, a_{22}, a_{33} 为主对角线,若主对角线下方元素均为 0,则称 AA 为上三角行列式。若上方元素为 0 则称下三角行列式,即若 aij=0,i>ja_{ij} = 0, \forall i > j,则 AA 为上三角行列式。若 aij=0,i<ja_{ij} = 0, \forall i < j,则 AA 为下三角行列式。

余子式的引入简化了行列式书写,但符号的处理仍旧为难题

那么我们能否通过一个新的概念增强行列式书写的简洁性?

/Define/ 引入代数余子式:Aij=(1)i+jMijA_{ij} = (-1)^{i+j}M_{ij}

A=a11A11+a21A21+a31A31.\begin{equation*} \Rightarrow |A| = a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}. \end{equation*}

然后我们定义行列式的转置:

/Define/

A=a11a21a31a12a22a32a13a23a33|A'| = \left| \begin{array}{ccc} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{array} \right|

A|A|的关系为行列互换

于是我们可以给出三阶行列式的性质

· 三阶行列式性质

  • 上三角或者下三角行列式的值等于主对角线上元素的乘积

  • 行列式某行或某列全为零,则行列式值等于零从

  • 行列式的某一行或某一列乘C,得到的值是原来行列式的C倍

  • 对换行列式里任意两行或两列后,新行列式的值为原行列式的相反数

  • 如果行列式有两行或两列成比例,那么该行列式值为0

  • 如果行列式里某一行或某一列的元素都可以拆成两个元素的和的话,那么这个行列式一定可以拆成两个行列式

  • 行列式的某一行乘以一个数加到另外一行上或者某一列乘以一个数加到另外一列上,行列式的值不改变

  • 行列式的转置和原行列式有相同的值

  • A=a1iA1i+a2iA2i+a3iA3i|A| = a_{1i}A_{1i} + a_{2i}A_{2i} + a_{3i}A_{3i}

    A=ai1Ai1+ai2Ai2+ai3Ai3|A| = a_{i1}A_{i1} + a_{i2}A_{i2} + a_{i3}A_{i3}

我们已经在代数层面上明晰了行列式的运算,接下来就是从几何角度解析行列式

· 行列式几何意义

二阶行列式的几何意义

α=[a1a2],β=[b1b2],SΔOAB=12abs(a1a2b1b2)\vec{\alpha} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, \quad \vec{\beta} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \quad S_{\Delta OAB} = \frac{1}{2} \text{abs} \left( \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right)

三阶行列式的几何意义

OA=[a1a2a3],OB=[b1b2b3],OC=[c1c2c3],VOABC=16abs(a1a2a3b1b2b3c1c2c3)\overrightarrow{OA} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, \quad \overrightarrow{OB} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \quad \overrightarrow{OC} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}, \quad V_{O-ABC} = \frac{1}{6} \text{abs} \left( \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \right)

Fragment 2 n阶行列式

· 定义

通过如上的内容,我们了解到二阶和三阶行列式是解方程中自然出现的产物

对于n阶行列式也有这样的意义,但n的阶数较大的时候,很难从解方程角度定义

因此下面通过递归方法定义n阶行列式

/Define/

定义1:由两条线围成的n行n列元素组成的式子(数值)称为n阶行列式:

A=a11a12a1na21a22a2nan1an2ann|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}

(矩阵一般用AA进行表示)

A|A| 有时也记为 det(A)\det (A)

a11,a22,,anna_{11},a_{22}, \cdots,a_{nn} 称为主对角线,将元素 aija_{ij} 所在的第 ii 行,第 jj 列元素删除,剩下元素按原来顺序构成的 n1n-1 阶行列式称为 aija_{ij} 的余子式,记为 MijM_{ij}

既然行列式本身是一个数值,我们如何定义这个数值?

之前我们通过二阶行列式递归定义三阶行列式

现在我们用数学归纳法定义n阶行列式

/Define/

定义2:当 n=1n=1 时,一阶行列式 a11=defa11|a_{11}| \stackrel{\text{def}}{=}a_{11}.假设所有 n1n-1 阶行列式已经定义好,特别地,定义nn 阶行列式:

A=defa11M11a21M21++(1)n+1an1Mn1|A|\stackrel{\text{def}}{=}a_{11}M_{11}-a_{21}M_{21}+\cdots +(-1)^{n+1}a_{n1}M_{n1}

称为 nn 阶行列式递归定义,按照第一列进行展开

引入代数余子式,表达会更为简单

/Define/

定义3:aija_{ij} 的代数余子式 Aij=(1)i+jMijA_{ij}=(-1)^{i+j}M_{ij}

A=a11A11+a21A21++an1An1|A|=a_{11}A_{11}+a_{21}A_{21}+\cdots+a_{n1}A_{n1}

与三阶行列式相同,定义 nn 阶行列式的上三角行列式和下三角行列式

/Define/

一个n阶行列式,如果它在主对角线以下的所有元素都为0,则称这个行列式为n阶上三角行列式:

a11a12a1n0a22a2n00ann\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}

一个n阶行列式,如果它在主对角线以上的所有元素都为0,则称这个行列式为 nn 阶下三角行列式:

a1100a21a220an1an2ann\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}

有了以上的准备工作,我们依次用数学归纳证明行列式的九条性质

· 性质

/property/

  • 性质1:上三角或者下三角行列式的值等于主对角线上元素的乘积

/proof/:

n=1n=1时,an=an|a_n|=a_n,结论成立。 设当对n1n-1阶行列式成立,则对nn阶情况

1). 上三角行列式

A=a11a12a1n0a22a2n00ann|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}

其中M11M_{11}n1n-1阶上三角行列式

由归纳假设,

M11=a22annA=a11a22annM_{11}=a_{22}\cdots a_{nn}\Rightarrow |A|=a_{11}a_{22}\cdots a_{nn}

2). 下三角行列式

A=a1100a21a220an1an2ann|A| = \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}

由定义A=a11M11a21M21++(1)n+1an1Mn1|A|=a_{11}M_{11}-a_{21}M_{21}+\cdots +(-1)^{n+1}a_{n1}M_{n1}

考虑公式 MklM_{kl} (1kn1 \leq k \leq n),

Mkl=(bij)(k1)×(n1)M_{kl} = (b_{ij})_{(k-1) \times (n-1)}

bij={ai,j+1ki<nai1,j+1k<in1b_{ij} = \begin{cases} a_{i,j+1} & k \leq i < n \\ a_{i-1,j+1} & k < i \leq n-1 \end{cases}

A|A| 下三角,即 aij=0a_{ij} = 0 i<j\forall i < j Mk1\Rightarrow M_{k1} 都是下三角形式

由此断言特别当 k2k \geq 2 时,Mk1M_{k1} 有一个主对角元 =0= 0

bk1,k1=bk1,k=0b_{k-1 , k-1}=b_{k-1 , k}=0

根据归纳架设Mk1=0(k2),M11=a11annM_{k1}=0(k\geq 2),M_{11}=a_{11}\cdots a_{nn}

A=a11a22ann\Rightarrow |A|=a_{11}\cdot a_{22}\cdots a_{nn}

(然后用性质3推性质2)

  • 性质3:行列式 A|A| 某一行(列)乘以数cc,得到新行列式 B=cA|B|=c|A|

/proof/:

n=1n=1 时,B=ca11=ca11=cA|B|=|ca_{11}|=ca_{11}=c|A|

下设对n1n-1阶行列式成立,考虑nn阶情况

1). 行的情况:

B=a11a12a1ncai1cai2cainannannann|B| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{i1} & ca_{i2} & \cdots & ca_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{nn} & \cdots & a_{nn} \end{vmatrix}

A|A| 余项 MijM_{ij} , B|B| 余项 NijN_{ij}

由定义 B=a11N11a21N21++(1)n+1ca11Ni1++(1)nannNnn|B| = a_{11} N_{11} - a_{21} N_{21} + \cdots + (-1)^{n+1} c a_{11} N_{i1} + \cdots + (-1)^n a_{nn} N_{nn}

k+ik+i时,NklN_{kl}MklM_{kl}的某一行乘以cc得到的, Nk1=cMk1(ki)N_{k1} = c M_{k1} \quad (\forall k \neq i) Ni1=Mi1N_{i1} = M_{i1}

B=c(a11M11a21M21++(1)n+1a11Mi1++(1)n+1an1Mn1)=cA\Rightarrow |B| = c \left( a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{11} M_{i1} + \cdots + (-1)^{n+1} a_{n1} M_{n1} \right)=c|A|

2). 列的情况:

若将cc乘以第1列,

B=ca11a12a1nca21a22a2ncan1an2ann|B| = \begin{vmatrix} c a_{11} & a_{12} & \cdots & a_{1n} \\ c a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}

iNi1=Mi1\forall i\quad N_{i1} = M_{i1}

B=ca11N11ca21N21++(1)n+1can1Nn1=c(a11M11a21M21++(1)n+1an1Mn1=cA\begin{align*} |B| &= c a_{11} N_{11} - c a_{21} N_{21} + \cdots + (-1)^{n+1} c a_{n1} N_{n1}\\ &= c (a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{n1} M_{n1}\\ &= c |A|\\ \end{align*}

cc是第jj列,j2j \geq 2

B=a11ca1ja1na21ca2ja2nan1canjann|B| = \begin{vmatrix} a_{11} &\cdots& c a_{1j} & \cdots & a_{1n} \\ a_{21} &\cdots& c a_{2j} & \cdots & a_{2n} \\ \vdots &\cdots& \vdots & \ddots & \vdots \\ a_{n1} &\cdots& c a_{nj} & \cdots & a_{nn} \end{vmatrix}

B=a11N11a21N21++(1)n+1an1Nn1|B| = a_{11} N_{11} - a_{21} N_{21} + \cdots + (-1)^{n+1} a_{n1} N_{n1}

Ni1N_{i1}Mi1M_{i1} 某一列乘以c得到,通过数学归纳, Nij=cMijiN_{ij} = c M_{ij} , \forall i

B=c(a11M11a21M21++(1)n+1an1Mn1)\Rightarrow |B| = c (a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{n1} M_{n1})

证毕

  • 性质2:若 A|A| 有一行(列)全为0,则 A=0|A|=0

/proof/

A=a11a12a1n000an1an2ann=0A|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = 0 \cdot |A|

证毕。

  • 性质4:对换A|A|的两个相邻行(列),所得行列式B=A|B|=-|A|

/proof/

n=2n=2时,结论成立。

假设对n1n-1阶行列式成立,讨论nn阶情况。

1). 对换相邻两行,ii 行与 i+1i+1

B=a11a12a1nai+1,1ai+1,2ai+1,nai,1ai,2ainan1an2ann|B| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i+1,1} & a_{i+1,2} & \cdots & a_{i+1,n} \\ a_{i,1} & a_{i,2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}

B=a11N11a21N21++(1)i+1ai+1,1Ni1+(1)i+2ai1Ni+1,1++an1Nn1|B| = a_{11} N_{11} - a_{21} N_{21} + \cdots + (-1)^{i+1} a_{i+1,1} N_{i1} + (-1)^{i+2} a_{i1} N_{i+1,1}+\cdots +a_{n1} N_{n1}

ki,i+1k \neq i, i+1 ,由 Mk1M_{k1} 对换两行得到.

由归纳假设 Nk1=Mk1N_{k1} = -M_{k1} ( ki,i+1k \neq i, i+1 )

Ni+1=Mi+1,1,Ni+1,1=Mi,1N_{i+1} = M_{i+1,1}, \quad N_{i+1,1} = M_{i,1}

B=(a1Mna2M2++(1)i+1ai1Mi1+(1)i+2ai+1,1Mi+1,1++an1Mn1)=A.\begin{align*} |B| &= -\left( a_1 M_n - a_2 M_2 + \cdots + (-1)^{i+1} a_{i1}M_{i1} + (-1)^{i+2} a_{i+1,1} M_{i+1,1} + \cdots + a_{n1} M_{n1} \right) \\ &= -|A|. \end{align*}

2). 对换 ii 行与 jj 行 ( i<ji<j )

等价于做了 2(ii)12(i-i)-1 次相邻兑换

根据 1) 推出结论,证毕.

列的证明在此省略…

  • 性质5:

    A|A|有两行(列)成比例(相等),则A=0|A|=0

/proof/

A=a11a12a1nca11ca12ca1nan1an2ann=c×0=0|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ c a_{11} & c a_{12} & \cdots & c a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = c \times 0 = 0

A|A|ii 行=第 jj 行 对换第 ii 行与第 jj 行,

A性质4A|A| \xRightarrow{\text{性质4}} -|A| 2A=0A=0\Rightarrow 2|A| = 0 \Rightarrow |A| = 0

对行的情况我们已经证明完毕

接下来是对于列的证明

A|A|有两列成比例(相等),则A=0|A|=0

证明 对阶数nn进行归纳。n=2n=2时成立。

n1n-1阶结论成立,讨论nn阶情况。

Case 1 相等的列都不是第1列

A=a11M11a21M21++(1)i+1an1Mn1=0|A| = a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{i+1} a_{n1} M_{n1} = 0

因为Mi1M_{i1} 都有两列相等,所以Mi1=0M_{i1}=0i\forall i

Case 2 第1列与第rr列相等,由A=0|A|=0.

不妨设 A|A| 第1列不全为零,如 as10a_{s1} \neq 0

A=a11a12a1nas1as2asnan1an2annproperty7C=0a12a1nas1as2asn0an2ann|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots\\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \xrightarrow{\text{property7}} |C| = \begin{vmatrix} 0 & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots\\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2} & \cdots & a_{nn} \end{vmatrix}

证毕.

  • 性质6 行列式拆分

a11a12a1na11+b11a12+b12a1n+b1nannannann=a11a12a1na11a12a1nannannann+a11a12a1nb11b12b1nannannann\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{nn} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{nn} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ b_{11} & b_{12} & \cdots & b_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{nn} & \cdots & a_{nn} \end{vmatrix}

C=a11a1r+b1ra1na21a2r+b2ra2nan1anr+bnrann=a11a1ra1na21a2ra2nan1anrann+a11b1ra1na21b2ra2nan1bnrann|C| = \begin{vmatrix} a_{11} & a_{1r} + b_{1r} & \cdots & a_{1n} \\ a_{21} & a_{2r} + b_{2r} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{nr} + b_{nr} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{1r} & \cdots & a_{1n} \\ a_{21} & a_{2r} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{nr} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & b_{1r} & \cdots & a_{1n} \\ a_{21} & b_{2r} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_{nr} & \cdots & a_{nn} \end{vmatrix}

/proof/

n=1n=1 时,a11+b11=a11+b11|a_{11}+b_{11}|=|a_{11}|+|b_{11}|.

下设对于 n1n-1 阶行列式成立,推出对 nn 阶行列式成立

C=a11Q11a21Q21++(1)n+1(an1+bn1)Qn1|C| = a_{11} Q_{11} - a_{21} Q_{21} + \cdots + (-1)^{n+1} (a_{n1} + b_{n1}) Q_{n1}

krk\neq r时, Qk1,Mk1,Nk1Q_{k1}, M_{k1}, N_{k1}满足性质6条件

Qkl=Mkl+NklkrQ_{kl} = M_{kl} + N_{kl} \quad \forall k \neq r

Qr1=Mr1=Nr1Q_{r1} = M_{r1} = N_{r1}

C=(a11M11a21M21++(1)n+1an1Mn1)+(b11N11b21N21++(1)n+1bn1Nn1)=A+B\begin{align*} |C| &=(a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{n1} M_{n1})\\ &+ (b_{11} N_{11} - b_{21} N_{21} + \cdots + (-1)^{n+1} b_{n1} N_{n1})\\ &= |A|+|B|\\ \end{align*}

行的情况证毕.

对于列的情况:

n=1n=1时成立。设阶数n1n-1结论成立,验证nn阶的情况

Case 1

r=1r=1C=(a11+b11)Q1(a21+b21)Q2++(1)n+1(an1+bn1)Qn|C| = (a_{11} + b_{11}) Q_1 - (a_{21} + b_{21}) Q_2 + \cdots + (-1)^{n+1} (a_{n1} + b_{n1}) Q_n

注意 Qii=Mii=NiiQ_{ii} = M_{ii} = N_{ii}, i\forall i C=A+B\Rightarrow |C| = |A| + |B|.

Case 2

r>1r > 1C=a11Q1a21Q2++(1)n+1an1Qn|C| = a_{11} Q_1 - a_{21} Q_2 + \cdots + (-1)^{n+1} a_{n1} Q_nQii,Mii,NiiQ_{ii}, M_{ii}, N_{ii}

满足性质6条件 Qii=Mii+Nii\Rightarrow Q_{ii} = M_{ii} + N_{ii}, i\forall i

证毕.

性质7:

B=a11a12a1nai1ai2ainaj1+cai1aj2+cai2ajn+cainan1an2ann=a11a12a1nai1ai2ainaj1aj2ajnan1an2ann=A|B| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} + ca_{i1} & a_{j2} + ca_{i2} & \cdots & a_{jn} + ca_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = |A|

/proof/

B=a11a12a1nai1ai2ainaj1aj2ajnan1an2ann+a11a12a1nai1ai2aincai1cai2cainan1an2ann=A|B| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{i1} & ca_{i2} & \cdots & ca_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = |A|

同理可证对于列的情况

证毕.

Fragment 3 行列式的展开与转置

在前面的内容中,我们已经证明了前7个性质

接下来我们证明性质8(转置)与性质9(展开)

· 行列式的展开

/proof/

先从列的角度证明行列式的展开

考虑如下相邻对换,既仅定义了相邻对换:

1r1rnr1r1r+1n1 \cdots r-1 \quad r \cdots n \longrightarrow r \quad 1 \cdots r-1 \quad r+1 \cdots n

对于矩阵 MijM_{ij}A|A| \rightarrow rr 次列的相邻对换 BB=(1)r+1A|B|\Rightarrow |B| = (-1)^{r+1} |A|.

B=a1ra11a1,r1a1,r+1a1na2ra21a2,r1a2,r+1a2nanran1an,r1an,r+1ann|B| = \begin{vmatrix} a_{1r} & a_{11} & \cdots & a_{1,r-1} & a_{1,r+1} & \cdots & a_{1n} \\ a_{2r} & a_{21} & \cdots & a_{2,r-1} & a_{2,r+1} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{nr} & a_{n1} & \cdots & a_{n,r-1} & a_{n,r+1} & \cdots & a_{nn} \end{vmatrix}

B=a1rN1ra2rN2r++(1)n+ranrNnr\Rightarrow |B| = a_{1r} N_{1r} - a_{2r} N_{2r} + \cdots + (-1)^{n+r} a_{nr} N_{nr}

容易看出i\forall iNir=MirN_{ir} = M_{ir}:

A=(1)r+1B=(1)r+1(a1rM1ra2rM2r++(1)n+ranrMnr)=(1)r+1a1rM1r+(1)r+2a2rM2r++(1)n+ranrMnr\begin{align*} \Rightarrow |A| &= (-1)^{r+1} |B| = (-1)^{r+1} (a_{1r} M_{1r} - a_{2r} M_{2r} + \cdots + (-1)^{n+r} a_{nr} M_{nr})\\ &= (-1)^{r+1} a_{1r} M_{1r} + (-1)^{r+2} a_{2r} M_{2r} + \cdots + (-1)^{n+r} a_{nr} M_{nr}\\ \end{align*}

A=a1rA1r+a2rA2r++anrAnr|A| = a_{1r} A_{1r} + a_{2r} A_{2r} + \cdots + a_{nr} A_{nr}

即按第rr列展开的展开式.

这个定理不只是按照第r列进行展开,我们还有更强的结论

首先我们引入Kroneken符号:

δij={1i=j0ij\delta_{ij} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}

后面会用到该符号来叙述定理

/theorem/

定理1:设 A|A|nn 阶行列式,1r,sn1 \leq r, s \leq n,则 a1rA1s+a2rA2s++anrAns=δrsAa_{1r} A_{1s} + a_{2r} A_{2s} + \cdots + a_{nr} A_{ns} = \delta_{rs} |A|

/proof/

r=sr=s,已证;

下不妨设 r<sr<s ,构造一个新行列式,

新行列式将第s列的元素全部换位第r列(方便证明)

实际上s列无论元素是什么,结论都成立

0=C=a11a1ra1ra1nak1akrakraknan1anranrann=a1rA1s+a2rA2s++anrAns0 = |C| = \begin{vmatrix} a_{11} & \cdots & a_{1r} & \cdots & a_{1r} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kr} & \cdots & a_{kr} & \cdots & a_{kn} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nr} & \cdots & a_{nr} & \cdots & a_{nn} \end{vmatrix} = a_{1r} A_{1s} + a_{2r} A_{2s} + \cdots + a_{nr} A_{ns}

后面推出的式子也称为 C|C| 按第 ss 列展开

A|A| 的第 ss 列元素与第 rr 列代数余子式的乘积之和为0.

(本节课的一些结论在研究矩阵时仍会用到)


引理2:

A=a11a1ra1n0asr0an1anrann=asrAsr|A| = \begin{vmatrix} a_{11} & \cdots & a_{1r} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ {0} & \cdots & a_{sr} & \cdots & {0} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nr} & \cdots & a_{nn} \end{vmatrix} = a_{sr} A_{sr}

/proof/“

A|A| 按第 rr 列进行展开

A=a1rA1r+a2rA2r++asrAsr++anrAnr|A| = a_{1r} A_{1r} + a_{2r} A_{2r} + \cdots + a_{sr} A_{sr} + \cdots + a_{nr} A_{nr}

i=s,Air0\forall i = s, \quad A_{ir} \neq 0

Air 中至少有一行为0    A=asrAsrA_{ir} \text{ 中至少有一行为0} \implies |A| = a_{sr} A_{sr}


引理3: A=a11A11+a12A12++a1nA1n|A| = a_{11} A_{11} + a_{12} A_{12} + \cdots + a_{1n} A_{1n} (按第 rr 行进行展开)

(该结果可以推广至类似定理1的对偶结果)

/proof/

rr行元素的拆分:

ar1=a11+0++0ar2=0+a12++0arn=0+0++a1na_{r1} = a_{11} + 0 + \cdots + 0\\ a_{r2} = 0 + a_{12} + \cdots + 0\\ \cdots \cdots\\ a_{rn} = 0 + 0 + \cdots + a_{1n}\\

A=a11a12a1nar100an1an2ann+a11a12a1n0ar20an1an2ann++a11a12a1n00arnan1an2ann\Rightarrow |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{r1} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} +\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{r2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}+ \cdots + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}\\

=ar1Ar1+ar2Ar2++arnArn\Rightarrow \quad = a_{r1} A_{r1} + a_{r2} A_{r2} + \cdots + a_{rn} A_{rn}

证毕.


定理4:设A|A|nn阶行列式,1r,sn1 \leq r, s \leq n,则

ar1As1+ar2As2++arnAsn=δrsAa_{r1} A_{s1} + a_{r2} A_{s2} + \cdots + a_{rn} A_{sn} = \delta_{rs} |A|

/proof/

r=sr=s已证\checkmark (引理3)

下不妨设r<sr<s

构造新行列式,按ss行展开

0=C=a11a12a1nar1ar2arnar1ar2arnan1an2ann=ar1As1+ar2As2++arnAsn0 = |C| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{r1} A_{s1} + a_{r2} A_{s2} + \cdots + a_{rn} A_{sn}

证毕.

性质9的证明全部结束.


· 行列式的转置

我们先给出定义:

/Define/

定义:

A=a11a12a1na21a22a2nan1an2ann,A=a11a21an1a12a22an2a1na2nann|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \quad , \quad |A'| = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}

A|A'|的第ii行,就是A|A|的第ii(Ai)(A_i)


性质8: A=A|A'| = |A|

/proof/

对阶数进行归纳 n=1n=1 成立

n1n-1 阶成立 \checkmarknn

A=a11M11a21M21++(1)n+1an1Mn1|A| = a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{n1} M_{n1}

i,j\forall i, j, NjiN_{ji}MijM_{ij} 的转置,

由归纳假设得 Nji=MijN_{ji} = M_{ij}, i,j\forall i, j

A=a11N11a21N21++(1)n+1an1Nn1=A|A| = a_{11} N_{11} - a_{21} N_{21} + \cdots + (-1)^{n+1} a_{n1} N_{n1} = |A'|

(按照第一行进行转置)


到这里为止,相当于我们证好了/给出了行列式最一般的定义

并证明了nn阶行列式一定满足9条性质

nn元线性方程组的解是否和nn阶行列式有关呢?


Fragment 4 行列式的计算

· nn元线性方程组的解

(){a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn(*) \quad \begin{cases} a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2 \\ \vdots \\ a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{nn} x_n = b_n \end{cases}

设(*)有解,系数行列式

A=a11a12a1na21a22a2nan1an2ann|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}

先考虑二阶、三阶时,分母不动

分子由数字列替换对应列,推广到 nn阶:

Ai=b1a12a1nb2a22a2nbnan2ann=a11x1+a12x2++a1nxna12a1na21x1+a22x2++a2nxna22a2nan1x1+an2x2++annxnan2ann|A_i| = \begin{vmatrix} b_1 & a_{12} & \cdots & a_{1n} \\ b_2 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n & a_{12} & \cdots & a_{1n} \\ a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{nn} x_n & a_{n2} & \cdots & a_{nn} \end{vmatrix}

利用性质化简

=a11x1a12a1na21x1a22a2nan1x1an2ann=x1a11a12a1na21a22a2nan1an2ann=x1A= \begin{vmatrix} a_{11} x_1 & a_{12} & \cdots & a_{1n} \\ a_{21} x_1 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} x_1 & a_{n2} & \cdots & a_{nn} \end{vmatrix} = x_1 \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = x_1 \cdot |A|

若(*)有解,

x1=A1A,,xn=AnA\Rightarrow \quad x_1=\frac {|A_1|}{|A|}\quad , \quad \cdots \quad , \quad x_n=\frac {|A_n|}{|A|}


· Cramer法则

A0|A| \neq 0,则(*) 有唯一解,

x1=A1A,,xn=AnAx_1=\frac {|A_1|}{|A|}\quad , \quad \cdots \quad , \quad x_n=\frac {|A_n|}{|A|}

(){a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn(*) \quad \begin{cases} a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2 \\ \vdots \\ a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{nn} x_n = b_n \end{cases}

/proof/

若 (*) 有解,则解必为如上形式。

此处仅证了存在的唯一性,未证解的存在性.

只要证明 xi=AiAx_i = \frac{|A_i|}{|A|} 确为 (*) 的解,即可.

其中

Ai=a11b1a1na21b2a2nan1bnann|A_i| = \begin{vmatrix} a_{11} & \cdots & b_1 & \cdots & a_{1n} \\ a_{21} & \cdots & b_2 & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & b_n & \cdots & a_{nn} \end{vmatrix}

下面我们来证明解的存在性

/proof/

a11As1+ar2As2++arnAsn=δrsA a_{11} A_{s1} + a_{r2} A_{s2} + \cdots + a_{rn} A_{sn} = \delta_{rs} |A|

j=1naijAsj=δrsA\sum_{j=1}^n a_{ij} A_{sj} = \delta_{rs} |A|

然后对行列式元素求和

i=1mai1+i=1mai2++i=1main=j=1ni=1maij\sum_{i=1}^m a_{i1} +\sum_{i=1}^m a_{i2}+\cdots + \sum_{i=1}^m a_{in}=\sum_{j=1}^n \sum_{i=1}^m a_{ij}

这里注意一点:

j=1ni=1maij=i=1mj=1naij\sum_{j=1}^n \sum_{i=1}^m a_{ij}=\sum_{i=1}^m \sum_{j=1}^n a_{ij}

以后若对一个长方形的二维行列式进行求和,如果行列括号的位置无改变,那么行列括号可以交换次序.

xj=AjA=1Ai=1nbiAijx_j = \frac{|A_j|}{|A|} = \frac{1}{|A|} \sum_{i=1}^n b_i A_{ij}

验证(*) 的第k个方程:

j=1nakjxj=bk,k1\sum_{j=1}^n a_{kj} x_j = b_k\quad , \quad \forall k\geq 1

j=1nakjxj=j=1n(akj1Ai=1nbiAij)=1Aj=1ni=1nakjbiAij=1Ai=1nbi(j=1nakjAij)=1Ai=1nbiδkiA=bk(i=k,1;ik,0)\begin{align*} \sum_{j=1}^n a_{kj} x_j &= \sum_{j=1}^n \left( a_{kj} \frac{1}{|A|} \sum_{i=1}^n b_i A_{ij} \right) = \frac{1}{|A|} \sum_{j=1}^n \sum_{i=1}^n a_{kj} b_i A_{ij}\\ &= \frac{1}{|A|} \sum_{i=1}^n b_i \left( \sum_{j=1}^n a_{kj} A_{ij} \right)\\ &= \frac{1}{|A|} \sum_{i=1}^n b_i \delta_{ki} |A| = b_k \quad (i=k, 1; i \neq k, 0) \end{align*}

有了Cramer法则后,相当于把求解nn元线性方程组的问题转化成求计算行列式的问题。

当阶数nn过大,仅按定义(某行、列)展开,计算量太大。

有无方法?(√)

/review/

A=a11a1sa1m0ars0an1ansann=arsArs|A| = \begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & a_{rs} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix} = a_{rs} A_{rs}

降阶法:

计算行列式的值时,利用行列式的性质, 将行列式的某行或某一列化出尽可能多的零, 再按这一行或这一列展开,进行降阶处理。

性质3:行列式的某一行或某一列乘C,得到的值是原来行列式的C倍

性质7:行列式的某一行乘以一个数加到另外一行上或者某一列乘以一个数加到另外一行上,行列式的值不改变

当拿到一个数字行列式:

  1. 0集中在什么地方
  2. 看1、-1在什么地方,可填同行(列)其它元素

我们接下来给出一些例题:

/example/ 求解这个行列式

A=1021211010031021|A| = \begin{vmatrix} 1 & 0 & 2 & 1 \\ 2 & -1 & 1 & 0 \\ 1 & 0 & 0 & 3 \\ -1 & 0 & 2 & 1\\ \end{vmatrix}

/proof/

按第2列展开

(1)121103121=(1)121022042=(1)2242=12(-1) \begin{vmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \\ -1 & 2 & 1 \end{vmatrix} =(-1) \begin {vmatrix} 1 & -2 & 1 \\ 0 & -2 & 2 \\ 0 & 4 & 2 \\ \end {vmatrix} =(-1) \begin {vmatrix} -2 & 2 \\ 4 & 2 \\ \end {vmatrix} =12

证毕.

/example/ 求解行列式

A=73152630311146529|A| = \begin{vmatrix} 7 & 3 & 1 & -5 \\ 2 & 6 & -3 & 0 \\ 3 & 11 & -1 & 4 \\ -6 & 5 & 2 & -9 \end{vmatrix}

/proof/

=7315231501510140120101=231515101412011==27700101502011=277×13=3601= \begin{vmatrix} 7 & 3 & 1 & -5 \\ 23 & 15 & 0 & -15 \\ 10 & 14 & 0 & -1 \\ -20 & -1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 23 & 15 & -15 \\ 10 & 14 & -1 \\ -20 & -1 & 1 \end{vmatrix}= = \begin{vmatrix} -277 & 0 & 0 \\ -10 & 15 & 0 \\ -20 & -1 & 1 \end{vmatrix} = -277 \times 13 = -3601

结束.

/example/

A=3612230512 |A| = \begin{vmatrix} 3 & 6 & 12 \\ 2 & -3 & 0 \\ 5 & 1 & 2 \end{vmatrix}

/proof/

3124230512=6124230512=6122230511=6×(9)×(3)=1623 \begin{vmatrix} 1 & 2 & 4 \\ 2 & -3 & 0 \\ 5 & 1 & 2 \end{vmatrix} =6\begin{vmatrix} 1 & 2 & 4 \\ 2 & -3 & 0 \\ 5 & 1 & 2 \end{vmatrix} = 6 \begin{vmatrix} 1 & 2 & 2 \\ 2 & -3 & 0 \\ 5 & 1 & 1 \end{vmatrix} = 6 \times (-9) \times (-3) = 162

结束.

· 文字行列式

数字行列式 \longrightarrow 文字行列式(元素中含未定元)

降阶法、递推法、求和法、提取因子法、拆分法


· Vandermonde 行列式

Vn=1x1x12x1n2x1n11x2x22x2n2x2n11xn1xn12xn1n2xn1n11xnxn2xnn2xnn1V_n = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-2} & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-2} & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-2} & x_{n-1}^{n-1} \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-2} & x_n^{n-1} \end{vmatrix}

/proof/

=1x1xnx12x1xnx1n2x1n3xnx1n1x1n2xn1x2xnx22x2xnx2n2x2n3xnx2n1x2n2xn1xn1xnxn12xn1xnxn1n2xn1n3xnxn1n1xn1n2xn10000= \begin{vmatrix} 1 & x_1 - x_n & x_1^2 - x_1 x_n & \cdots & x_1^{n-2} - x_1^{n-3} x_n & x_1^{n-1} - x_1^{n-2} x_n \\ 1 & x_2 - x_n & x_2^2 - x_2 x_n & \cdots & x_2^{n-2} - x_2^{n-3} x_n & x_2^{n-1} - x_2^{n-2} x_n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n-1} - x_n & x_{n-1}^2 - x_{n-1} x_n & \cdots & x_{n-1}^{n-2} - x_{n-1}^{n-3} x_n & x_{n-1}^{n-1} - x_{n-1}^{n-2} x_n \\ 1 & 0 & 0 & \cdots & 0 & 0 \end{vmatrix}

按照最后一行进行展开

=(1)n+1x1xnx12x1xnx1n2x1n3xnx1n1x1n2xnx2xnx22x2xnx2n2x2n3xnx2n1x2n2xnxn1xnxn12xn1xnxn1n2xn1n3xnxn1n1xn1n2xn=(-1)^{n+1} \begin{vmatrix} x_1 - x_n & x_1^2 - x_1 x_n & \cdots & x_1^{n-2} - x_1^{n-3} x_n & x_1^{n-1} - x_1^{n-2} x_n \\ x_2 - x_n & x_2^2 - x_2 x_n & \cdots & x_2^{n-2} - x_2^{n-3} x_n & x_2^{n-1} - x_2^{n-2} x_n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n-1} - x_n & x_{n-1}^2 - x_{n-1} x_n & \cdots & x_{n-1}^{n-2} - x_{n-1}^{n-3} x_n & x_{n-1}^{n-1} - x_{n-1}^{n-2} x_n \\ \end{vmatrix}

根据性质化简展开

=(1)n+1(x1xn)(x2xn)(xn1xn)1x1x1n3x1n21x2x2n3x2n21xn1xn1n3xn1n2= (-1)^{n+1} (x_1 - x_n) (x_2 - x_n) \cdots (x_{n-1} - x_n) \cdot \begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-3} & x_1^{n-2} \\ 1 & x_2 & \cdots & x_2^{n-3} & x_2^{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n-1} & \cdots & x_{n-1}^{n-3} & x_{n-1}^{n-2} \end{vmatrix}

化为递推式:

    Vn=(xnx1)(xnx2)(xnxn1)Vn1    Vn=1i<jn(xjxi)\implies V_n = (x_n - x_1) (x_n - x_2) \cdots (x_n - x_{n-1}) V_{n-1} \\ \implies V_n = \prod_{1 \leq i < j \leq n} (x_j - x_i)

事实上,我们有时候也会用到未定元降幂排列.

Vn=x1n1x1n2x11x2n1x2n2x21xnn1xnn2xn1V_n = \begin{vmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & x_1 & 1 \\ x_2^{n-1} & x_2^{n-2} & \cdots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_n^{n-1} & x_n^{n-2} & \cdots & x_n& 1 \\ \end{vmatrix}

(n1)+(n2)++1=n(n1)2(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2} 次列换对换

V~n=(1)n(n1)2Vn=1i<jn(xixj)\widetilde{V}_n = (-1)^{\frac{n(n-1)}{2}} V_n = \prod_{1 \leq i < j \leq n} (x_i - x_j)

结束.


· 递推法

/example/ 多项式的友阵的特征多项式

Fn=λ00an1λ0an100λa2001λ+a1F_n = \begin{vmatrix} \lambda & 0 & \cdots & 0 & a_n \\ -1 & \lambda & \cdots & 0 & a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & a_2 \\ 0 & 0 & \cdots & -1 & \lambda + a_1 \end{vmatrix}

/proof/

按第一行展开:

Fn=(1)n+1λFn1+(1)n+1an(1)n1=λFn1+an,F1=λ+a1=λ(λFn2+an1)+an=λ2Fn2+an1λ+an=λ(λFn2+an1)+an=λ2Fn2+an1λ+an\begin{align*} F_n &= (-1)^{n+1} \lambda \cdot F_{n-1} + (-1)^{n+1} a_n (-1)^{n-1} = \lambda \cdot F_{n-1} + a_n, \quad F_1 = \lambda + a_1\\ &= \lambda (\lambda F_{n-2} + a_{n-1}) + a_n = \lambda^2 F_{n-2} + a_{n-1} \lambda + a_n\\ &= \lambda (\lambda F_{n-2} + a_{n-1}) + a_n = \lambda^2 F_{n-2} + a_{n-1} \lambda + a_n \end{align*}

结束.


· 求和法

/example/

A=xaaaaaxaaaaaaxaaaaax |A| = \begin{vmatrix} x & a & a & \cdots & a & a \\ a & x & a & \cdots & a & a \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a & a & a & \cdots & x & a \\ a & a & a & \cdots & a & x \end{vmatrix}

/proof/

利用性质7

=x+(n1)ax+(n2)ax+(n3)ax+(n1)aaxaaaaax= \begin{vmatrix} x + (n-1)a & x + (n-2)a & x + (n-3)a & \cdots & x + (n-1)a \\ a & x & a & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{vmatrix}

再进行展开

=(x+(n1)a)1111axaaaaax=(x+(n1)a)11110xa00000xa= (x + (n-1)a) \cdot \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & x & a & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{vmatrix} = (x + (n-1)a) \cdot \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & x-a & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & x-a \end{vmatrix}

容易发现这是一个上三角行列式

=(x+(n1)a)(xa)n1 = (x + (n-1)a) (x-a)^{n-1}

结束.


· 提取因子法

/example/

A=xyzwyxwzzwxywzyx |A| = \begin{vmatrix} x & y & z & w \\ y & x & w & z \\ z & w & x & y \\ w & z & y & x \end{vmatrix}

/proof/

强行拆解会非常麻烦

通过观察我们可以发现每一行和相同

start!

=x+y+z+wyzwx+y+z+wxwzx+y+z+wzwxx+y+z+wwxy=(A)1yzw1xwz1zwx1wxy= \begin{vmatrix} x+y+z+w & y & z & w \\ x+y+z+w & x & w & z \\ x+y+z+w & z & w & x \\ x+y+z+w & w & x & y \end{vmatrix} =(A) \begin{vmatrix} 1 & y & z & w \\ 1 & x & w & z \\ 1 & z & w & x \\ 1 & w & x & y \end{vmatrix}

A=x+y+z+wA=x+y+z+w

然后利用性质化简

=(A)1yzw0xywzzw0wyxzyw0zyyzxw= (A) \begin{vmatrix} 1 & y & z & w \\ 0 & x-y & w-z & z-w \\ 0 & w-y & x-z & y-w \\ 0 & z-y & y-z & x-w \end{vmatrix}

然后按照第一列展开

=(A)xywzzwwyzzywzyyzxw=(A)\begin{vmatrix} x-y & w-z & z-w \\ w-y & z-z & y-w \\ z-y & y-z & x-w \end{vmatrix}

然后在列上使用性质7

=x+wyzwz0x+wyzxzx+yzw0yzx+yzw=\begin{vmatrix} x+w-y-z & w-z & 0 \\ x+w-y-z & x-z & x+y-z-w \\ 0 & y-z & x+y-z-w \end{vmatrix}

提取公因子

=(ABC)1wz01xz10yz1=(ABC)1wz00xw10yz1=(ABC) \begin{vmatrix} 1 & w-z & 0 \\ 1 & x-z & 1 \\ 0 & y-z & 1 \end{vmatrix} =(ABC) \begin{vmatrix} 1 & w-z & 0 \\ 0 & x-w & 1 \\ 0 & y-z & 1 \end{vmatrix}

B=x+wyzB=x+w-y-z

C=x+yzwC=x+y-z-w

按照第一列进行展开

=(ABC)1wz00xw10yz1=(ABC)xw1yz1=(ABC) \begin{vmatrix} 1 & w-z & 0 \\ 0 & x-w & 1 \\ 0 & y-z & 1 \end{vmatrix} =(ABC) \begin{vmatrix} x-w & 1 \\ y-z & 1 \end{vmatrix}

结束.


· 拆分法

/example/ 证明

ax+byay+bzaz+bxay+bzaz+bxax+byaz+bxax+byay+bz=(a3+b3)xyzyzxzxy\begin{vmatrix} ax + by & ay + bz & az + bx \\ ay + bz & az + bx & ax + by \\ az + bx & ax + by & ay + bz \end{vmatrix} = (a^3 + b^3) \begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix}

/proof/

=axay+bzaz+bxayaz+bxax+byazax+byay+bz+byay+bzaz+bxbzaz+bxax+bybxax+byay+bz= \begin{vmatrix} ax & ay + bz & az + bx \\ ay & az + bx & ax + by \\ az & ax + by & ay + bz \end{vmatrix} + \begin{vmatrix} by & ay + bz & az + bx \\ bz & az + bx & ax + by \\ bx & ax + by & ay + bz \end{vmatrix}

后续过程略.


/example/ 证明

A=(a+b)2c2c2a2(b+c)2a2b2b2(c+a)2=2abc(a+b+c)3 |A| = \begin{vmatrix} (a+b)^2 & c^2 & c^2 \\ a^2 & (b+c)^2 & a^2 \\ b^2 & b^2 & (c+a)^2 \end{vmatrix} = 2abc(a+b+c)^3

/proof/

如果算功好的化可以展开合并同类项

但是也可以用行列式性质

=(a+b)2c2c20a2(b+c)2(b+c)2a2(b+c)20b2(c+a)2b2= \begin{vmatrix} (a+b)^2 - c^2 & c^2 & 0 \\ a^2 - (b+c)^2 & (b+c)^2 & a^2 - (b+c)^2 \\ 0 & b^2 & (c+a)^2 - b^2 \end{vmatrix}

提取公因式:

=(a+b+c)2a+bcc20abc(b+c)2a+bc0b2a+cb= (a+b+c)^2 \begin{vmatrix} a+b-c & c^2 & 0 \\ a-b-c & (b+c)^2 & a+b-c \\ 0 & b^2 & a+c-b \end{vmatrix}

简化 (b+c)2(b+c)^2

=(a+b+c)2a+bcc202b2bc2c0ba+cb=(a+b+c)2a+bcc2(a+b+c)02b02c0b2(a+b+c)a+cb = (a+b+c)^2 \begin{vmatrix} a+b-c & c^2 & 0 \\ -2b & 2bc & -2c \\ 0 & b & a+c-b \end{vmatrix} = (a+b+c)^2 \begin{vmatrix} a+b-c & \frac{c}{2}(a+b+c) & 0 \\ -2b & 0 & -2c \\ 0 & \frac{b}{2}(a+b+c) & a+c-b \end{vmatrix}

因为 2bc2bc 的存在,还是无法简化

再次利用性质

=(a+b+c)2a+bcc2(a+b+c)02b02c0b2(a+b+c)a+cb= (a+b+c)^2 \begin{vmatrix} a+b-c & \frac{c}{2}(a+b+c) & 0 \\ -2b & 0 & -2c \\ 0 & \frac{b}{2}(a+b+c) & a+c-b \end{vmatrix}

再次提取公因式

=(a+b+c)3a+bcc202b02c0b2a+cb = (a+b+c)^3 \begin{vmatrix} a+b-c & \frac{c}{2} & 0 \\ -2b & 0 & -2c \\ 0 & \frac{b}{2} & a+c-b \end{vmatrix}

=(a+b+c)3[(a+bc)bc(2b)(c2)(a+cb)]=2abc(a+b+c)3= (a+b+c)^3 \left[ (a+b-c) \cdot bc - (-2b) \left( \frac{c}{2} \right) (a+c-b) \right]\\ = 2abc(a+b+c)^3

证毕.

Fragment 5 行列式的等价定义

这两部分(等价定义+ Laplace 定理)相较高等代数对线性代数的要求没那么高

已发展行列式的整套理论,此处从性质入手,得到行列式的组合定义.

/Define/

1,2,,n1, 2, \ldots, n 全排列全体为 SnS_nSn=n!S_n = n!

在一个全排列中,指标从小到大为常序排列(只有一个 1,2,,n1, 2, \ldots, n)(常序排列逆序数等于 00) 否则称为逆序排列。

j>ij > ijj 排在 ii 之前,则称 (j,i)(j, i) 为一个逆序对。

对全排列 (k1,k2,,kn)(k_1, k_2, \ldots, k_n),其中逆序对的总个数称为全排列的逆序数,记为 N(k1,k2,,kn)N(k_1, k_2, \ldots, k_n)


逆序数的求法:

设全排列为 (k1,k2,,kn)(k_1, k_2, \ldots, k_n) -

k1k_1 后面有几个数比它小,记为 m1m_1

k2k_2 后面有几个数比它小,记为 m2m_2

\cdots \cdots

kn1k_{n-1} 后面有几个数比它小,记为 mn1m_{n-1}

于是 N(k1,k2,,kn)=m1+m2++mn1N(k_1, k_2, \ldots, k_n) = m_1 + m_2 + \cdots + m_{n-1}


/example/ 求 N(4,1,3,5,2)=3+0+1+1=5N(4, 1, 3, 5, 2) = 3 + 0 + 1 + 1 = 5

/proof/

m1=3,m2=0,m3=1,m4=1m_1 = 3, \quad m_2 = 0, \quad m_3 = 1, \quad m_4 = 1


/Define/

N(k1,k2,,kn)={偶数奇数N(k_1, k_2, \cdots, k_n)=\begin{cases} \text{偶数} \\ \text{奇数} \end{cases}

则称 N(k1,k2,,kn)={偶排列奇排列N(k_1, k_2, \cdots, k_n)=\begin{cases} \text{偶排列} \\ \text{奇排列} \end{cases}