· Determinant
Fragment 1 二阶行列式
线性代数研究步骤:引入问题 → \rightarrow → 概念方法 → \rightarrow → 解决问题
Q:如何进行线性方程组求解?
给出n n n 元线性方程:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = B 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = B 2 … a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = B m \begin{equation*}
\begin{cases}
a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = B_1 \\
a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = B_2 \\
\ldots \\
a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n = B_m
\end{cases}
\end{equation*}
⎩ ⎨ ⎧ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = B 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = B 2 … a m 1 x 1 + a m 2 x 2 + ⋯ + a mn x n = B m
n n n 个未定元: x 1 , … , x n x_1, \ldots, x_n x 1 , … , x n ;a i j a_{ij} a ij ,B i B_i B i 为常数,方程个数与未定元个数不一定相等。
而在第三章我们才能给出这个问题的解。第一章主要讨论 m = n m=n m = n 的情况。
当 n = 2 n=2 n = 2 时,二元线性方程组
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \begin{equation*}
\begin{cases}
a_{11} x_1 + a_{12} x_2 = b_1 \\
a_{21} x_1 + a_{22} x_2 = b_2
\end{cases}
\end{equation*}
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2
(1) × Q 22 − ( 2 ) × Q 12 : ( a 11 a 22 − a 21 a 12 ) x 1 = b 1 a 22 − b 2 a 12 \times Q_{22} - (2) \times Q_{12}: (a_{11} a_{22} - a_{21} a_{12}) x_1 = b_1 a_{22} - b_2 a_{12} × Q 22 − ( 2 ) × Q 12 : ( a 11 a 22 − a 21 a 12 ) x 1 = b 1 a 22 − b 2 a 12 。
写法不够简洁。由此引入二阶行列式
· 定义
/Define/
定义二阶行列式:
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 21 a 12 \left| \begin{array}{cc} a_{11} & a_{12} \\
a_{21} & a_{22} \end{array} \right| = a_{11} a_{22} - a_{21} a_{12}
a 11 a 21 a 12 a 22 = a 11 a 22 − a 21 a 12
⇒ x 1 = ∣ a 11 a 12 b 1 b 2 ∣ ∣ a 11 a 12 a 21 a 22 ∣ , x 2 = ∣ a 11 b 1 a 21 b 2 ∣ ∣ a 11 a 12 a 21 a 22 ∣ \Rightarrow
x_1 = \frac{\left| \begin{array}{cc} a_{11} & a_{12} \\ b_1 & b_2 \end{array} \right|}{\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|},
\quad
x_2 = \frac{\left| \begin{array}{cc} a_{11} & b_1 \\ a_{21} & b_2 \end{array} \right|}{\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|}
⇒ x 1 = a 11 a 21 a 12 a 22 a 11 b 1 a 12 b 2 , x 2 = a 11 a 21 a 12 a 22 a 11 a 21 b 1 b 2
定事实上二阶行列式并非人为定义,而是解方程组中自然出现的。
当 n = 3 n=3 n = 3 时,三元线性方程组
{ a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 \begin{equation*}
\begin{cases}
a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1 \\
a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2 \\
a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3
\end{cases}
\end{equation*}
⎩ ⎨ ⎧ a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3
用待定系数法:(1) × V + ( 2 ) × U + ( 3 ) × W \times V + (2) \times U + (3) \times W × V + ( 2 ) × U + ( 3 ) × W
{ ( a 11 U + a 21 V + a 31 W ) x 1 = b 1 U + b 2 V + b 3 W a 12 U + a 22 V + a 32 W = 0 a 13 U + a 23 V + a 33 W = 0 \begin{equation*}
\begin{cases}
(a_{11}U + a_{21}V + a_{31}W)x_1 = b_1U + b_2V + b_3W \\
a_{12}U + a_{22}V + a_{32}W = 0 \\
a_{13}U + a_{23}V + a_{33}W = 0
\end{cases}
\end{equation*}
⎩ ⎨ ⎧ ( a 11 U + a 21 V + a 31 W ) x 1 = b 1 U + b 2 V + b 3 W a 12 U + a 22 V + a 32 W = 0 a 13 U + a 23 V + a 33 W = 0
化简为二元线性方程组
{ a 12 U W + a 22 V W = − a 32 a 13 U W + a 23 V W = − a 33 \begin{equation*}
\begin{cases}
a_{12} \frac{U}{W} + a_{22} \frac{V}{W} = -a_{32} \\
a_{13} \frac{U}{W} + a_{23} \frac{V}{W} = -a_{33}
\end{cases}
\end{equation*}
{ a 12 W U + a 22 W V = − a 32 a 13 W U + a 23 W V = − a 33
不妨令 U = ∣ a 22 a 23 a 32 a 33 ∣ U = \left| \begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array} \right| U = a 22 a 32 a 23 a 33 , V = − ∣ a 12 a 13 a 32 a 33 ∣ V = -\left| \begin{array}{cc} a_{12} & a_{13} \\ a_{32} & a_{33} \end{array} \right| V = − a 12 a 32 a 13 a 33 , W = ∣ a 12 a 13 a 22 a 23 ∣ W = \left| \begin{array}{cc} a_{12} & a_{13} \\ a_{22} & a_{23} \end{array} \right| W = a 12 a 22 a 13 a 23 。
通过上述方程组解出 U U U , V V V , W W W 。
通过如上运算,我们可以给出三阶行列式的定义
/Define/
定义三阶行列式(递归定义)
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = def a 11 ∣ a 22 a 23 a 32 a 33 ∣ a 21 ∣ a 12 a 13 a 32 a 33 ∣ + a 31 ∣ a 12 a 13 a 22 a 23 ∣ \begin{equation*}
\left|
\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{array}
\right| \quad \stackrel{\text{def}}{=} \quad a_{11}
\left|
\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33} \\
\end{array}
\right|
a_{21}
\left|
\begin{array}{cc}
a_{12} & a_{13} \\
a_{32} & a_{33} \\
\end{array}
\right|
+a_{31}
\left|
\begin{array}{cc}
a_{12} & a_{13} \\
a_{22} & a_{23} \\
\end{array}
\right|
\end{equation*}
a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 = def a 11 a 22 a 32 a 23 a 33 a 21 a 12 a 32 a 13 a 33 + a 31 a 12 a 22 a 13 a 23
如下的展开式称为 “组合定义”
= a 11 a 22 a 33 + a 21 a 32 a 13 + a 31 a 12 a 23 − a 11 a 32 a 23 − a 21 a 12 a 33 − a 31 a 22 a 13 = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23}\\ - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33} - a_{31}a_{22}a_{13}
= a 11 a 22 a 33 + a 21 a 32 a 13 + a 31 a 12 a 23 − a 11 a 32 a 23 − a 21 a 12 a 33 − a 31 a 22 a 13
利用三阶行列式写三元线性方程组
x 1 = ∣ b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 ∣ ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ , x 2 = ∣ a 11 b 1 a 13 a 21 b 2 a 23 a 31 b 3 a 33 ∣ ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ , x 3 = ∣ a 11 a 12 b 1 a 21 a 22 b 2 a 31 a 32 b 3 ∣ ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \begin{equation*}
x_1 = \frac{\left|
\begin{array}{ccc}
b_1 & a_{12} & a_{13} \\
b_2 & a_{22} & a_{23} \\
b_3 & a_{32} & a_{33} \\
\end{array}
\right|}{\left|
\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{array}
\right|}
\quad , \quad
x_2 = \frac{\left|
\begin{array}{ccc}
a_{11} & b_1 & a_{13} \\
a_{21} & b_2 & a_{23} \\
a_{31} & b_3 & a_{33} \\
\end{array}
\right|}{\left|
\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{array}
\right|}
\quad , \quad
x_3 = \frac{\left|
\begin{array}{ccc}
a_{11} & a_{12} & b_1 \\
a_{21} & a_{22} & b_2 \\
a_{31} & a_{32} & b_3 \\
\end{array}
\right|}
{\left|
\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{array}
\right|}
\end{equation*}
x 1 = a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 b 1 b 2 b 3 a 12 a 22 a 32 a 13 a 23 a 33 , x 2 = a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 a 11 a 21 a 31 b 1 b 2 b 3 a 13 a 23 a 33 , x 3 = a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 a 11 a 21 a 31 a 12 a 22 a 32 b 1 b 2 b 3
这种写法仍旧过于复杂,那我们就需要引入概念简化三阶行列式写法
/Define/
定义:∣ A ∣ |A| ∣ A ∣ 为三阶行列式,将元素 a i j a_{ij} a ij 所在的第 i i i 行,第 j j j 列元素删除,剩下元素按原来顺序构成的二阶行列式称为 a i j a_{ij} a ij 的余子式,记为 M i j M_{ij} M ij
可以重写递规定义:∣ A ∣ = a 11 M 11 − a 21 M 21 + a 31 M 31 |A| = a_{11}M_{11} - a_{21}M_{21} + a_{31}M_{31} ∣ A ∣ = a 11 M 11 − a 21 M 21 + a 31 M 31 (称为第一列展开)
/example/
∣ 1 − 1 2 2 0 3 − 1 − 3 2 ∣ = 1 × ∣ 0 3 − 3 2 ∣ − 2 × ∣ − 1 2 − 3 2 ∣ + ( − 1 ) × ∣ − 1 2 0 3 ∣ = 4 \begin{align*}
\left|
\begin{array}{ccc}
1 & -1 & 2 \\
2 & 0 & 3 \\
-1 & -3 & 2 \\
\end{array}
\right| = 1 \times \left|
\begin{array}{cc}
0 & 3 \\
-3 & 2 \\
\end{array}
\right| - 2 \times \left|
\begin{array}{cc}
-1 & 2 \\
-3 & 2 \\
\end{array}
\right| + (-1) \times \left|
\begin{array}{cc}
-1 & 2 \\
0 & 3 \\
\end{array}
\right| = 4 \\
\end{align*}
1 2 − 1 − 1 0 − 3 2 3 2 = 1 × 0 − 3 3 2 − 2 × − 1 − 3 2 2 + ( − 1 ) × − 1 0 2 3 = 4
∣ a a 2 + a + 1 1 0 − a a − 1 0 0 0 ∣ = a × ∣ − a a − 1 0 0 ∣ = a 3 + a − 1 \left|
\begin{array}{ccc}
a & a^2+a+1 & 1 \\
0 & -a & a-1 \\
0 & 0 & 0 \\
\end{array}
\right| = a \times \left|
\begin{array}{cc}
-a & a-1 \\
0 & 0 \\
\end{array}
\right| = a^3 + a - 1 \\
a 0 0 a 2 + a + 1 − a 0 1 a − 1 0 = a × − a 0 a − 1 0 = a 3 + a − 1
关于三阶行列式,还有一些概念,以后会用到:
/Define/
定义:∣ A ∣ = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ |A| = \left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| ∣ A ∣ = a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 中 a 11 , a 22 , a 33 a_{11}, a_{22}, a_{33} a 11 , a 22 , a 33 为主对角线,若主对角线下方元素均为 0,则称 A A A 为上三角行列式。若上方元素为 0 则称下三角行列式,即若 a i j = 0 , ∀ i > j a_{ij} = 0, \forall i > j a ij = 0 , ∀ i > j ,则 A A A 为上三角行列式。若 a i j = 0 , ∀ i < j a_{ij} = 0, \forall i < j a ij = 0 , ∀ i < j ,则 A A A 为下三角行列式。
余子式的引入简化了行列式书写,但符号的处理仍旧为难题
那么我们能否通过一个新的概念增强行列式书写的简洁性?
/Define/ 引入代数余子式:A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} A ij = ( − 1 ) i + j M ij
⇒ ∣ A ∣ = a 11 A 11 + a 21 A 21 + a 31 A 31 . \begin{equation*}
\Rightarrow |A| = a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}.
\end{equation*}
⇒ ∣ A ∣ = a 11 A 11 + a 21 A 21 + a 31 A 31 .
然后我们定义行列式的转置:
/Define/
∣ A ′ ∣ = ∣ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ∣ |A'| = \left|
\begin{array}{ccc}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array} \right|
∣ A ′ ∣ = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33
与∣ A ∣ |A| ∣ A ∣ 的关系为行列互换
于是我们可以给出三阶行列式的性质
· 三阶行列式性质
上三角或者下三角行列式的值等于主对角线上元素的乘积
行列式某行或某列全为零,则行列式值等于零从
行列式的某一行或某一列乘C,得到的值是原来行列式的C倍
对换行列式里任意两行或两列后,新行列式的值为原行列式的相反数
如果行列式有两行或两列成比例,那么该行列式值为0
如果行列式里某一行或某一列的元素都可以拆成两个元素的和的话,那么这个行列式一定可以拆成两个行列式
行列式的某一行乘以一个数加到另外一行上或者某一列乘以一个数加到另外一列上,行列式的值不改变
行列式的转置和原行列式有相同的值
∣ A ∣ = a 1 i A 1 i + a 2 i A 2 i + a 3 i A 3 i |A| = a_{1i}A_{1i} + a_{2i}A_{2i} + a_{3i}A_{3i} ∣ A ∣ = a 1 i A 1 i + a 2 i A 2 i + a 3 i A 3 i
∣ A ∣ = a i 1 A i 1 + a i 2 A i 2 + a i 3 A i 3 |A| = a_{i1}A_{i1} + a_{i2}A_{i2} + a_{i3}A_{i3} ∣ A ∣ = a i 1 A i 1 + a i 2 A i 2 + a i 3 A i 3
我们已经在代数层面上明晰了行列式的运算,接下来就是从几何角度解析行列式
· 行列式几何意义
二阶行列式的几何意义
α ⃗ = [ a 1 a 2 ] , β ⃗ = [ b 1 b 2 ] , S Δ O A B = 1 2 abs ( ∣ a 1 a 2 b 1 b 2 ∣ ) \vec{\alpha} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, \quad
\vec{\beta} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix},
\quad S_{\Delta OAB} = \frac{1}{2} \text{abs}
\left( \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right)
α = [ a 1 a 2 ] , β = [ b 1 b 2 ] , S Δ O A B = 2 1 abs ( a 1 b 1 a 2 b 2 )
三阶行列式的几何意义
O A → = [ a 1 a 2 a 3 ] , O B → = [ b 1 b 2 b 3 ] , O C → = [ c 1 c 2 c 3 ] , V O − A B C = 1 6 abs ( ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ ) \overrightarrow{OA} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, \quad \overrightarrow{OB} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \quad \overrightarrow{OC} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}, \quad V_{O-ABC} = \frac{1}{6} \text{abs} \left( \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \right)
O A = a 1 a 2 a 3 , OB = b 1 b 2 b 3 , OC = c 1 c 2 c 3 , V O − A BC = 6 1 abs a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3
Fragment 2 n阶行列式
· 定义
通过如上的内容,我们了解到二阶和三阶行列式是解方程中自然出现的产物
对于n阶行列式也有这样的意义,但n的阶数较大的时候,很难从解方程角度定义
因此下面通过递归方法定义n阶行列式
/Define/
定义1:由两条线围成的n行n列元素组成的式子(数值)称为n阶行列式:
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ |A| = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
∣ A ∣ = a 11 a 21 ⋮ a n 1 a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
(矩阵一般用A A A 进行表示)
∣ A ∣ |A| ∣ A ∣ 有时也记为 det ( A ) \det (A) det ( A )
a 11 , a 22 , ⋯ , a n n a_{11},a_{22}, \cdots,a_{nn} a 11 , a 22 , ⋯ , a nn 称为主对角线,将元素 a i j a_{ij} a ij 所在的第 i i i 行,第 j j j 列元素删除,剩下元素按原来顺序构成的 n − 1 n-1 n − 1 阶行列式称为 a i j a_{ij} a ij 的余子式,记为 M i j M_{ij} M ij
既然行列式本身是一个数值,我们如何定义这个数值?
之前我们通过二阶行列式递归定义三阶行列式
现在我们用数学归纳法定义n阶行列式
/Define/
定义2:当 n = 1 n=1 n = 1 时,一阶行列式 ∣ a 11 ∣ = def a 11 |a_{11}| \stackrel{\text{def}}{=}a_{11} ∣ a 11 ∣ = def a 11 .假设所有 n − 1 n-1 n − 1 阶行列式已经定义好,特别地,定义n n n 阶行列式:
∣ A ∣ = def a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 |A|\stackrel{\text{def}}{=}a_{11}M_{11}-a_{21}M_{21}+\cdots +(-1)^{n+1}a_{n1}M_{n1}
∣ A ∣ = def a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1
称为 n n n 阶行列式递归定义,按照第一列进行展开
引入代数余子式,表达会更为简单
/Define/
定义3:a i j a_{ij} a ij 的代数余子式 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} A ij = ( − 1 ) i + j M ij
∣ A ∣ = a 11 A 11 + a 21 A 21 + ⋯ + a n 1 A n 1 |A|=a_{11}A_{11}+a_{21}A_{21}+\cdots+a_{n1}A_{n1}
∣ A ∣ = a 11 A 11 + a 21 A 21 + ⋯ + a n 1 A n 1
与三阶行列式相同,定义 n n n 阶行列式的上三角行列式和下三角行列式
/Define/
一个n阶行列式,如果它在主对角线以下的所有元素都为0,则称这个行列式为n阶上三角行列式:
∣ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{vmatrix}
a 11 0 ⋮ 0 a 12 a 22 ⋮ 0 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
一个n阶行列式,如果它在主对角线以上的所有元素都为0,则称这个行列式为 n n n 阶下三角行列式:
∣ a 11 0 ⋯ 0 a 21 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
a 11 a 21 ⋮ a n 1 0 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ 0 0 ⋮ a nn
有了以上的准备工作,我们依次用数学归纳证明行列式的九条性质
· 性质
/property/
性质1:上三角或者下三角行列式的值等于主对角线上元素的乘积
/proof/:
若n = 1 n=1 n = 1 时,∣ a n ∣ = a n |a_n|=a_n ∣ a n ∣ = a n ,结论成立。 设当对n − 1 n-1 n − 1 阶行列式成立,则对n n n 阶情况
1). 上三角行列式
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}
∣ A ∣ = a 11 0 ⋮ 0 a 12 a 22 ⋮ 0 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
其中M 11 M_{11} M 11 为n − 1 n-1 n − 1 阶上三角行列式
由归纳假设,
M 11 = a 22 ⋯ a n n ⇒ ∣ A ∣ = a 11 a 22 ⋯ a n n M_{11}=a_{22}\cdots a_{nn}\Rightarrow |A|=a_{11}a_{22}\cdots a_{nn}
M 11 = a 22 ⋯ a nn ⇒ ∣ A ∣ = a 11 a 22 ⋯ a nn
2). 下三角行列式
∣ A ∣ = ∣ a 11 0 ⋯ 0 a 21 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ |A| =
\begin{vmatrix}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
∣ A ∣ = a 11 a 21 ⋮ a n 1 0 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ 0 0 ⋮ a nn
由定义∣ A ∣ = a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 |A|=a_{11}M_{11}-a_{21}M_{21}+\cdots +(-1)^{n+1}a_{n1}M_{n1} ∣ A ∣ = a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1
考虑公式 M k l M_{kl} M k l (1 ≤ k ≤ n 1 \leq k \leq n 1 ≤ k ≤ n ),
设 M k l = ( b i j ) ( k − 1 ) × ( n − 1 ) M_{kl} = (b_{ij})_{(k-1) \times (n-1)} M k l = ( b ij ) ( k − 1 ) × ( n − 1 )
b i j = { a i , j + 1 k ≤ i < n a i − 1 , j + 1 k < i ≤ n − 1 b_{ij} = \begin{cases} a_{i,j+1} & k \leq i < n \\ a_{i-1,j+1} & k < i \leq n-1 \end{cases}
b ij = { a i , j + 1 a i − 1 , j + 1 k ≤ i < n k < i ≤ n − 1
∣ A ∣ |A| ∣ A ∣ 下三角,即 a i j = 0 a_{ij} = 0 a ij = 0 ∀ i < j \forall i < j ∀ i < j ⇒ M k 1 \Rightarrow M_{k1} ⇒ M k 1 都是下三角形式
由此断言特别当 k ≥ 2 k \geq 2 k ≥ 2 时,M k 1 M_{k1} M k 1 有一个主对角元 = 0 = 0 = 0
b k − 1 , k − 1 = b k − 1 , k = 0 b_{k-1 , k-1}=b_{k-1 , k}=0 b k − 1 , k − 1 = b k − 1 , k = 0
根据归纳架设M k 1 = 0 ( k ≥ 2 ) , M 11 = a 11 ⋯ a n n M_{k1}=0(k\geq 2),M_{11}=a_{11}\cdots a_{nn} M k 1 = 0 ( k ≥ 2 ) , M 11 = a 11 ⋯ a nn
⇒ ∣ A ∣ = a 11 ⋅ a 22 ⋯ a n n \Rightarrow |A|=a_{11}\cdot a_{22}\cdots a_{nn} ⇒ ∣ A ∣ = a 11 ⋅ a 22 ⋯ a nn
(然后用性质3推性质2)
性质3:行列式 ∣ A ∣ |A| ∣ A ∣ 某一行(列)乘以数c c c ,得到新行列式 ∣ B ∣ = c ∣ A ∣ |B|=c|A| ∣ B ∣ = c ∣ A ∣
/proof/:
当 n = 1 n=1 n = 1 时,∣ B ∣ = ∣ c a 11 ∣ = c a 11 = c ∣ A ∣ |B|=|ca_{11}|=ca_{11}=c|A| ∣ B ∣ = ∣ c a 11 ∣ = c a 11 = c ∣ A ∣
下设对n − 1 n-1 n − 1 阶行列式成立,考虑n n n 阶情况
1). 行的情况:
∣ B ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ c a i 1 c a i 2 ⋯ c a i n ⋮ ⋮ ⋱ ⋮ a n n a n n ⋯ a n n ∣ |B| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
ca_{i1} & ca_{i2} & \cdots & ca_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{nn} & a_{nn} & \cdots & a_{nn} \end{vmatrix}
∣ B ∣ = a 11 ⋮ c a i 1 ⋮ a nn a 12 ⋮ c a i 2 ⋮ a nn ⋯ ⋱ ⋯ ⋱ ⋯ a 1 n ⋮ c a in ⋮ a nn
∣ A ∣ |A| ∣ A ∣ 余项 M i j M_{ij} M ij , ∣ B ∣ |B| ∣ B ∣ 余项 N i j N_{ij} N ij
由定义 ∣ B ∣ = a 11 N 11 − a 21 N 21 + ⋯ + ( − 1 ) n + 1 c a 11 N i 1 + ⋯ + ( − 1 ) n a n n N n n |B| = a_{11} N_{11} - a_{21} N_{21} + \cdots + (-1)^{n+1} c a_{11} N_{i1} + \cdots + (-1)^n a_{nn} N_{nn} ∣ B ∣ = a 11 N 11 − a 21 N 21 + ⋯ + ( − 1 ) n + 1 c a 11 N i 1 + ⋯ + ( − 1 ) n a nn N nn
当k + i k+i k + i 时,N k l N_{kl} N k l 是M k l M_{kl} M k l 的某一行乘以c c c 得到的, N k 1 = c M k 1 ( ∀ k ≠ i ) N_{k1} = c M_{k1} \quad (\forall k \neq i) N k 1 = c M k 1 ( ∀ k = i ) N i 1 = M i 1 N_{i1} = M_{i1} N i 1 = M i 1
⇒ ∣ B ∣ = c ( a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a 11 M i 1 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 ) = c ∣ A ∣ \Rightarrow |B| = c \left( a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{11} M_{i1} + \cdots + (-1)^{n+1} a_{n1} M_{n1} \right)=c|A|
⇒ ∣ B ∣ = c ( a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a 11 M i 1 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 ) = c ∣ A ∣
2). 列的情况:
若将c c c 乘以第1列,
∣ B ∣ = ∣ c a 11 a 12 ⋯ a 1 n c a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ c a n 1 a n 2 ⋯ a n n ∣ |B| = \begin{vmatrix} c a_{11} & a_{12} & \cdots & a_{1n} \\ c a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}
∣ B ∣ = c a 11 c a 21 ⋮ c a n 1 a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
∀ i N i 1 = M i 1 \forall i\quad N_{i1} = M_{i1} ∀ i N i 1 = M i 1
∣ B ∣ = c a 11 N 11 − c a 21 N 21 + ⋯ + ( − 1 ) n + 1 c a n 1 N n 1 = c ( a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 = c ∣ A ∣ \begin{align*}
|B| &= c a_{11} N_{11} - c a_{21} N_{21} + \cdots + (-1)^{n+1} c a_{n1} N_{n1}\\
&= c (a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{n1} M_{n1}\\
&= c |A|\\
\end{align*}
∣ B ∣ = c a 11 N 11 − c a 21 N 21 + ⋯ + ( − 1 ) n + 1 c a n 1 N n 1 = c ( a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 = c ∣ A ∣
若c c c 是第j j j 列,j ≥ 2 j \geq 2 j ≥ 2
∣ B ∣ = ∣ a 11 ⋯ c a 1 j ⋯ a 1 n a 21 ⋯ c a 2 j ⋯ a 2 n ⋮ ⋯ ⋮ ⋱ ⋮ a n 1 ⋯ c a n j ⋯ a n n ∣ |B| = \begin{vmatrix}
a_{11} &\cdots& c a_{1j} & \cdots & a_{1n} \\
a_{21} &\cdots& c a_{2j} & \cdots & a_{2n} \\
\vdots &\cdots& \vdots & \ddots & \vdots \\
a_{n1} &\cdots& c a_{nj} & \cdots & a_{nn} \end{vmatrix}
∣ B ∣ = a 11 a 21 ⋮ a n 1 ⋯ ⋯ ⋯ ⋯ c a 1 j c a 2 j ⋮ c a nj ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
∣ B ∣ = a 11 N 11 − a 21 N 21 + ⋯ + ( − 1 ) n + 1 a n 1 N n 1 |B| = a_{11} N_{11} - a_{21} N_{21} + \cdots + (-1)^{n+1} a_{n1} N_{n1}
∣ B ∣ = a 11 N 11 − a 21 N 21 + ⋯ + ( − 1 ) n + 1 a n 1 N n 1
N i 1 N_{i1} N i 1 由 M i 1 M_{i1} M i 1 某一列乘以c得到,通过数学归纳, N i j = c M i j , ∀ i N_{ij} = c M_{ij} , \forall i N ij = c M ij , ∀ i
⇒ ∣ B ∣ = c ( a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 ) \Rightarrow |B| = c (a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{n1} M_{n1})
⇒ ∣ B ∣ = c ( a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 )
证毕
性质2:若 ∣ A ∣ |A| ∣ A ∣ 有一行(列)全为0,则 ∣ A ∣ = 0 |A|=0 ∣ A ∣ = 0 。
/proof/
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n 0 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = 0 ⋅ ∣ A ∣ |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = 0 \cdot |A|
∣ A ∣ = a 11 0 ⋮ a n 1 a 12 0 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n 0 ⋮ a nn = 0 ⋅ ∣ A ∣
证毕。
性质4:对换∣ A ∣ |A| ∣ A ∣ 的两个相邻行(列),所得行列式∣ B ∣ = − ∣ A ∣ |B|=-|A| ∣ B ∣ = − ∣ A ∣ 。
/proof/
当n = 2 n=2 n = 2 时,结论成立。
假设对n − 1 n-1 n − 1 阶行列式成立,讨论n n n 阶情况。
1). 对换相邻两行,i i i 行与 i + 1 i+1 i + 1 行
∣ B ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i + 1 , 1 a i + 1 , 2 ⋯ a i + 1 , n a i , 1 a i , 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ |B| = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i+1,1} & a_{i+1,2} & \cdots & a_{i+1,n} \\
a_{i,1} & a_{i,2} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
∣ B ∣ = a 11 ⋮ a i + 1 , 1 a i , 1 ⋮ a n 1 a 12 ⋮ a i + 1 , 2 a i , 2 ⋮ a n 2 ⋯ ⋱ ⋯ ⋯ ⋱ ⋯ a 1 n ⋮ a i + 1 , n a in ⋮ a nn
∣ B ∣ = a 11 N 11 − a 21 N 21 + ⋯ + ( − 1 ) i + 1 a i + 1 , 1 N i 1 + ( − 1 ) i + 2 a i 1 N i + 1 , 1 + ⋯ + a n 1 N n 1 |B| = a_{11} N_{11} - a_{21} N_{21} + \cdots + (-1)^{i+1} a_{i+1,1} N_{i1} + (-1)^{i+2} a_{i1} N_{i+1,1}+\cdots +a_{n1} N_{n1}
∣ B ∣ = a 11 N 11 − a 21 N 21 + ⋯ + ( − 1 ) i + 1 a i + 1 , 1 N i 1 + ( − 1 ) i + 2 a i 1 N i + 1 , 1 + ⋯ + a n 1 N n 1
当 k ≠ i , i + 1 k \neq i, i+1 k = i , i + 1 ,由 M k 1 M_{k1} M k 1 对换两行得到.
由归纳假设 N k 1 = − M k 1 N_{k1} = -M_{k1} N k 1 = − M k 1 ( k ≠ i , i + 1 k \neq i, i+1 k = i , i + 1 )
N i + 1 = M i + 1 , 1 , N i + 1 , 1 = M i , 1 N_{i+1} = M_{i+1,1}, \quad N_{i+1,1} = M_{i,1}
N i + 1 = M i + 1 , 1 , N i + 1 , 1 = M i , 1
∣ B ∣ = − ( a 1 M n − a 2 M 2 + ⋯ + ( − 1 ) i + 1 a i 1 M i 1 + ( − 1 ) i + 2 a i + 1 , 1 M i + 1 , 1 + ⋯ + a n 1 M n 1 ) = − ∣ A ∣ . \begin{align*}
|B| &= -\left( a_1 M_n - a_2 M_2 + \cdots + (-1)^{i+1} a_{i1}M_{i1} + (-1)^{i+2} a_{i+1,1} M_{i+1,1} + \cdots + a_{n1} M_{n1} \right) \\
&= -|A|.
\end{align*}
∣ B ∣ = − ( a 1 M n − a 2 M 2 + ⋯ + ( − 1 ) i + 1 a i 1 M i 1 + ( − 1 ) i + 2 a i + 1 , 1 M i + 1 , 1 + ⋯ + a n 1 M n 1 ) = − ∣ A ∣.
2). 对换 i i i 行与 j j j 行 ( i < j i<j i < j )
等价于做了 2 ( i − i ) − 1 2(i-i)-1 2 ( i − i ) − 1 次相邻兑换
根据 1) 推出结论,证毕.
列的证明在此省略…
/proof/
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n c a 11 c a 12 ⋯ c a 1 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = c × 0 = 0 |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ c a_{11} & c a_{12} & \cdots & c a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = c \times 0 = 0
∣ A ∣ = a 11 c a 11 ⋮ a n 1 a 12 c a 12 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n c a 1 n ⋮ a nn = c × 0 = 0
设∣ A ∣ |A| ∣ A ∣ 第 i i i 行=第 j j j 行 对换第 i i i 行与第 j j j 行,
∣ A ∣ ⇒ 性质4 − ∣ A ∣ |A| \xRightarrow{\text{性质4}} -|A| ∣ A ∣ 性质 4 − ∣ A ∣ ⇒ 2 ∣ A ∣ = 0 ⇒ ∣ A ∣ = 0 \Rightarrow 2|A| = 0 \Rightarrow |A| = 0 ⇒ 2∣ A ∣ = 0 ⇒ ∣ A ∣ = 0
对行的情况我们已经证明完毕
接下来是对于列的证明
若∣ A ∣ |A| ∣ A ∣ 有两列成比例(相等),则∣ A ∣ = 0 |A|=0 ∣ A ∣ = 0 。
证明 对阶数n n n 进行归纳。n = 2 n=2 n = 2 时成立。
设n − 1 n-1 n − 1 阶结论成立,讨论n n n 阶情况。
Case 1 相等的列都不是第1列
∣ A ∣ = a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) i + 1 a n 1 M n 1 = 0 |A| = a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{i+1} a_{n1} M_{n1} = 0
∣ A ∣ = a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) i + 1 a n 1 M n 1 = 0
因为M i 1 M_{i1} M i 1 都有两列相等,所以M i 1 = 0 M_{i1}=0 M i 1 = 0 ,∀ i \forall i ∀ i
Case 2 第1列与第r r r 列相等,由∣ A ∣ = 0 |A|=0 ∣ A ∣ = 0 .
不妨设 ∣ A ∣ |A| ∣ A ∣ 第1列不全为零,如 a s 1 ≠ 0 a_{s1} \neq 0 a s 1 = 0
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ a s 1 a s 2 ⋯ a s n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ → property7 ∣ C ∣ = ∣ 0 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ a s 1 a s 2 ⋯ a s n ⋮ ⋮ ⋱ ⋮ 0 a n 2 ⋯ a n n ∣ |A| = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \vdots & \vdots\\
a_{s1} & a_{s2} & \cdots & a_{sn} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
\xrightarrow{\text{property7}} |C| =
\begin{vmatrix}
0 & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \vdots & \vdots\\
a_{s1} & a_{s2} & \cdots & a_{sn} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n2} & \cdots & a_{nn} \end{vmatrix}
∣ A ∣ = a 11 ⋮ a s 1 ⋮ a n 1 a 12 ⋮ a s 2 ⋮ a n 2 ⋯ ⋮ ⋯ ⋱ ⋯ a 1 n ⋮ a s n ⋮ a nn property7 ∣ C ∣ = 0 ⋮ a s 1 ⋮ 0 a 12 ⋮ a s 2 ⋮ a n 2 ⋯ ⋮ ⋯ ⋱ ⋯ a 1 n ⋮ a s n ⋮ a nn
证毕.
∣ a 11 a 12 ⋯ a 1 n a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n ⋮ ⋮ ⋱ ⋮ a n n a n n ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a n n a n n ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n b 11 b 12 ⋯ b 1 n ⋮ ⋮ ⋱ ⋮ a n n a n n ⋯ a n n ∣ \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{nn} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{nn} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ b_{11} & b_{12} & \cdots & b_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{nn} & \cdots & a_{nn} \end{vmatrix}
a 11 a 11 + b 11 ⋮ a nn a 12 a 12 + b 12 ⋮ a nn ⋯ ⋯ ⋱ ⋯ a 1 n a 1 n + b 1 n ⋮ a nn = a 11 a 11 ⋮ a nn a 12 a 12 ⋮ a nn ⋯ ⋯ ⋱ ⋯ a 1 n a 1 n ⋮ a nn + a 11 b 11 ⋮ a nn a 12 b 12 ⋮ a nn ⋯ ⋯ ⋱ ⋯ a 1 n b 1 n ⋮ a nn
∣ C ∣ = ∣ a 11 a 1 r + b 1 r ⋯ a 1 n a 21 a 2 r + b 2 r ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n r + b n r ⋯ a n n ∣ = ∣ a 11 a 1 r ⋯ a 1 n a 21 a 2 r ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n r ⋯ a n n ∣ + ∣ a 11 b 1 r ⋯ a 1 n a 21 b 2 r ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 b n r ⋯ a n n ∣ |C| = \begin{vmatrix} a_{11} & a_{1r} + b_{1r} & \cdots & a_{1n} \\ a_{21} & a_{2r} + b_{2r} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{nr} + b_{nr} & \cdots & a_{nn} \end{vmatrix}
= \begin{vmatrix} a_{11} & a_{1r} & \cdots & a_{1n} \\ a_{21} & a_{2r} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{nr} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & b_{1r} & \cdots & a_{1n} \\ a_{21} & b_{2r} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_{nr} & \cdots & a_{nn} \end{vmatrix}
∣ C ∣ = a 11 a 21 ⋮ a n 1 a 1 r + b 1 r a 2 r + b 2 r ⋮ a n r + b n r ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn = a 11 a 21 ⋮ a n 1 a 1 r a 2 r ⋮ a n r ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn + a 11 a 21 ⋮ a n 1 b 1 r b 2 r ⋮ b n r ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
/proof/
当 n = 1 n=1 n = 1 时,∣ a 11 + b 11 ∣ = ∣ a 11 ∣ + ∣ b 11 ∣ |a_{11}+b_{11}|=|a_{11}|+|b_{11}| ∣ a 11 + b 11 ∣ = ∣ a 11 ∣ + ∣ b 11 ∣ .
下设对于 n − 1 n-1 n − 1 阶行列式成立,推出对 n n n 阶行列式成立
∣ C ∣ = a 11 Q 11 − a 21 Q 21 + ⋯ + ( − 1 ) n + 1 ( a n 1 + b n 1 ) Q n 1 |C| = a_{11} Q_{11} - a_{21} Q_{21} + \cdots + (-1)^{n+1} (a_{n1} + b_{n1}) Q_{n1}
∣ C ∣ = a 11 Q 11 − a 21 Q 21 + ⋯ + ( − 1 ) n + 1 ( a n 1 + b n 1 ) Q n 1
当 k ≠ r k\neq r k = r 时, Q k 1 , M k 1 , N k 1 Q_{k1}, M_{k1}, N_{k1} Q k 1 , M k 1 , N k 1 满足性质6条件
Q k l = M k l + N k l ∀ k ≠ r Q_{kl} = M_{kl} + N_{kl} \quad \forall k \neq r Q k l = M k l + N k l ∀ k = r
Q r 1 = M r 1 = N r 1 Q_{r1} = M_{r1} = N_{r1} Q r 1 = M r 1 = N r 1
∣ C ∣ = ( a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 ) + ( b 11 N 11 − b 21 N 21 + ⋯ + ( − 1 ) n + 1 b n 1 N n 1 ) = ∣ A ∣ + ∣ B ∣ \begin{align*}
|C| &=(a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{n1} M_{n1})\\
&+ (b_{11} N_{11} - b_{21} N_{21} + \cdots + (-1)^{n+1} b_{n1} N_{n1})\\
&= |A|+|B|\\
\end{align*}
∣ C ∣ = ( a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 ) + ( b 11 N 11 − b 21 N 21 + ⋯ + ( − 1 ) n + 1 b n 1 N n 1 ) = ∣ A ∣ + ∣ B ∣
行的情况证毕.
对于列的情况:
n = 1 n=1 n = 1 时成立。设阶数n − 1 n-1 n − 1 结论成立,验证n n n 阶的情况
Case 1
r = 1 r=1 r = 1 , ∣ C ∣ = ( a 11 + b 11 ) Q 1 − ( a 21 + b 21 ) Q 2 + ⋯ + ( − 1 ) n + 1 ( a n 1 + b n 1 ) Q n |C| = (a_{11} + b_{11}) Q_1 - (a_{21} + b_{21}) Q_2 + \cdots + (-1)^{n+1} (a_{n1} + b_{n1}) Q_n ∣ C ∣ = ( a 11 + b 11 ) Q 1 − ( a 21 + b 21 ) Q 2 + ⋯ + ( − 1 ) n + 1 ( a n 1 + b n 1 ) Q n
注意 Q i i = M i i = N i i Q_{ii} = M_{ii} = N_{ii} Q ii = M ii = N ii , ∀ i \forall i ∀ i ⇒ ∣ C ∣ = ∣ A ∣ + ∣ B ∣ \Rightarrow |C| = |A| + |B| ⇒ ∣ C ∣ = ∣ A ∣ + ∣ B ∣ .
Case 2
r > 1 r > 1 r > 1 , ∣ C ∣ = a 11 Q 1 − a 21 Q 2 + ⋯ + ( − 1 ) n + 1 a n 1 Q n |C| = a_{11} Q_1 - a_{21} Q_2 + \cdots + (-1)^{n+1} a_{n1} Q_n ∣ C ∣ = a 11 Q 1 − a 21 Q 2 + ⋯ + ( − 1 ) n + 1 a n 1 Q n ,Q i i , M i i , N i i Q_{ii}, M_{ii}, N_{ii} Q ii , M ii , N ii
满足性质6条件 ⇒ Q i i = M i i + N i i \Rightarrow Q_{ii} = M_{ii} + N_{ii} ⇒ Q ii = M ii + N ii , ∀ i \forall i ∀ i
证毕.
性质7:
∣ B ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ a j 1 + c a i 1 a j 2 + c a i 2 ⋯ a j n + c a i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ a j 1 a j 2 ⋯ a j n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ A ∣ |B| = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{j1} + ca_{i1} & a_{j2} + ca_{i2} & \cdots & a_{jn} + ca_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{j1} & a_{j2} & \cdots & a_{jn} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = |A|
∣ B ∣ = a 11 ⋮ a i 1 ⋮ a j 1 + c a i 1 ⋮ a n 1 a 12 ⋮ a i 2 ⋮ a j 2 + c a i 2 ⋮ a n 2 ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ a 1 n ⋮ a in ⋮ a jn + c a in ⋮ a nn = a 11 ⋮ a i 1 ⋮ a j 1 ⋮ a n 1 a 12 ⋮ a i 2 ⋮ a j 2 ⋮ a n 2 ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ a 1 n ⋮ a in ⋮ a jn ⋮ a nn = ∣ A ∣
/proof/
∣ B ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ a j 1 a j 2 ⋯ a j n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋱ ⋮ c a i 1 c a i 2 ⋯ c a i n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ A ∣ |B| = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{j1} & a_{j2} & \cdots & a_{jn} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} + \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots \\
ca_{i1} & ca_{i2} & \cdots & ca_{in} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = |A|
∣ B ∣ = a 11 ⋮ a i 1 ⋮ a j 1 ⋮ a n 1 a 12 ⋮ a i 2 ⋮ a j 2 ⋮ a n 2 ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ a 1 n ⋮ a in ⋮ a jn ⋮ a nn + a 11 ⋮ a i 1 ⋮ c a i 1 ⋮ a n 1 a 12 ⋮ a i 2 ⋮ c a i 2 ⋮ a n 2 ⋯ ⋱ ⋯ ⋱ ⋯ ⋱ ⋯ a 1 n ⋮ a in ⋮ c a in ⋮ a nn = ∣ A ∣
同理可证对于列的情况
证毕.
Fragment 3 行列式的展开与转置
在前面的内容中,我们已经证明了前7个性质
接下来我们证明性质8(转置)与性质9(展开)
· 行列式的展开
/proof/
先从列的角度证明行列式的展开
考虑如下相邻对换,既仅定义了相邻对换:
1 ⋯ r − 1 r ⋯ n ⟶ r 1 ⋯ r − 1 r + 1 ⋯ n 1 \cdots r-1 \quad r \cdots n \longrightarrow r \quad 1 \cdots r-1 \quad r+1 \cdots n
1 ⋯ r − 1 r ⋯ n ⟶ r 1 ⋯ r − 1 r + 1 ⋯ n
对于矩阵 M i j M_{ij} M ij :∣ A ∣ → |A| \rightarrow ∣ A ∣ → r r r 次列的相邻对换 ∣ B ∣ ⇒ ∣ B ∣ = ( − 1 ) r + 1 ∣ A ∣ |B|\Rightarrow |B| = (-1)^{r+1} |A| ∣ B ∣ ⇒ ∣ B ∣ = ( − 1 ) r + 1 ∣ A ∣ .
∣ B ∣ = ∣ a 1 r a 11 ⋯ a 1 , r − 1 a 1 , r + 1 ⋯ a 1 n a 2 r a 21 ⋯ a 2 , r − 1 a 2 , r + 1 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ a n r a n 1 ⋯ a n , r − 1 a n , r + 1 ⋯ a n n ∣ |B| = \begin{vmatrix}
a_{1r} & a_{11} & \cdots & a_{1,r-1} & a_{1,r+1} & \cdots & a_{1n} \\
a_{2r} & a_{21} & \cdots & a_{2,r-1} & a_{2,r+1} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{nr} & a_{n1} & \cdots & a_{n,r-1} & a_{n,r+1} & \cdots & a_{nn}
\end{vmatrix}
∣ B ∣ = a 1 r a 2 r ⋮ a n r a 11 a 21 ⋮ a n 1 ⋯ ⋯ ⋱ ⋯ a 1 , r − 1 a 2 , r − 1 ⋮ a n , r − 1 a 1 , r + 1 a 2 , r + 1 ⋮ a n , r + 1 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
⇒ ∣ B ∣ = a 1 r N 1 r − a 2 r N 2 r + ⋯ + ( − 1 ) n + r a n r N n r \Rightarrow |B| = a_{1r} N_{1r} - a_{2r} N_{2r} + \cdots + (-1)^{n+r} a_{nr} N_{nr}
⇒ ∣ B ∣ = a 1 r N 1 r − a 2 r N 2 r + ⋯ + ( − 1 ) n + r a n r N n r
容易看出∀ i \forall i ∀ i ,N i r = M i r N_{ir} = M_{ir} N i r = M i r :
⇒ ∣ A ∣ = ( − 1 ) r + 1 ∣ B ∣ = ( − 1 ) r + 1 ( a 1 r M 1 r − a 2 r M 2 r + ⋯ + ( − 1 ) n + r a n r M n r ) = ( − 1 ) r + 1 a 1 r M 1 r + ( − 1 ) r + 2 a 2 r M 2 r + ⋯ + ( − 1 ) n + r a n r M n r \begin{align*}
\Rightarrow |A| &= (-1)^{r+1} |B| = (-1)^{r+1} (a_{1r} M_{1r} - a_{2r} M_{2r} + \cdots + (-1)^{n+r} a_{nr} M_{nr})\\
&= (-1)^{r+1} a_{1r} M_{1r} + (-1)^{r+2} a_{2r} M_{2r} + \cdots + (-1)^{n+r} a_{nr} M_{nr}\\
\end{align*}
⇒ ∣ A ∣ = ( − 1 ) r + 1 ∣ B ∣ = ( − 1 ) r + 1 ( a 1 r M 1 r − a 2 r M 2 r + ⋯ + ( − 1 ) n + r a n r M n r ) = ( − 1 ) r + 1 a 1 r M 1 r + ( − 1 ) r + 2 a 2 r M 2 r + ⋯ + ( − 1 ) n + r a n r M n r
∣ A ∣ = a 1 r A 1 r + a 2 r A 2 r + ⋯ + a n r A n r |A| = a_{1r} A_{1r} + a_{2r} A_{2r} + \cdots + a_{nr} A_{nr}
∣ A ∣ = a 1 r A 1 r + a 2 r A 2 r + ⋯ + a n r A n r
即按第r r r 列展开的展开式.
这个定理不只是按照第r列进行展开,我们还有更强的结论
首先我们引入Kroneken 符号:
δ i j = { 1 i = j 0 i ≠ j \delta_{ij} = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}
δ ij = { 1 0 i = j i = j
后面会用到该符号来叙述定理
/theorem/
定理1:设 ∣ A ∣ |A| ∣ A ∣ 为 n n n 阶行列式,1 ≤ r , s ≤ n 1 \leq r, s \leq n 1 ≤ r , s ≤ n ,则 a 1 r A 1 s + a 2 r A 2 s + ⋯ + a n r A n s = δ r s ∣ A ∣ a_{1r} A_{1s} + a_{2r} A_{2s} + \cdots + a_{nr} A_{ns} = \delta_{rs} |A| a 1 r A 1 s + a 2 r A 2 s + ⋯ + a n r A n s = δ rs ∣ A ∣
/proof/
若 r = s r=s r = s ,已证;
下不妨设 r < s r<s r < s ,构造一个新行列式,
新行列式将第s列的元素全部换位第r列(方便证明)
实际上s列无论元素是什么,结论都成立
0 = ∣ C ∣ = ∣ a 11 ⋯ a 1 r ⋯ a 1 r ⋯ a 1 n ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ a k 1 ⋯ a k r ⋯ a k r ⋯ a k n ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ a n 1 ⋯ a n r ⋯ a n r ⋯ a n n ∣ = a 1 r A 1 s + a 2 r A 2 s + ⋯ + a n r A n s 0 = |C| = \begin{vmatrix}
a_{11} & \cdots & a_{1r} & \cdots & a_{1r} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{k1} & \cdots & a_{kr} & \cdots & a_{kr} & \cdots & a_{kn} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nr} & \cdots & a_{nr} & \cdots & a_{nn} \end{vmatrix}
= a_{1r} A_{1s} + a_{2r} A_{2s} + \cdots + a_{nr} A_{ns}
0 = ∣ C ∣ = a 11 ⋮ a k 1 ⋮ a n 1 ⋯ ⋱ ⋯ ⋱ ⋯ a 1 r ⋮ a k r ⋮ a n r ⋯ ⋱ ⋯ ⋱ ⋯ a 1 r ⋮ a k r ⋮ a n r ⋯ ⋱ ⋯ ⋱ ⋯ a 1 n ⋮ a kn ⋮ a nn = a 1 r A 1 s + a 2 r A 2 s + ⋯ + a n r A n s
后面推出的式子也称为 ∣ C ∣ |C| ∣ C ∣ 按第 s s s 列展开
∣ A ∣ |A| ∣ A ∣ 的第 s s s 列元素与第 r r r 列代数余子式的乘积之和为0.
(本节课的一些结论在研究矩阵时仍会用到)
引理2:
∣ A ∣ = ∣ a 11 ⋯ a 1 r ⋯ a 1 n ⋮ ⋱ ⋮ ⋱ ⋮ 0 ⋯ a s r ⋯ 0 ⋮ ⋱ ⋮ ⋱ ⋮ a n 1 ⋯ a n r ⋯ a n n ∣ = a s r A s r |A| = \begin{vmatrix}
a_{11} & \cdots & a_{1r} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
{0} & \cdots & a_{sr} & \cdots & {0} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nr} & \cdots & a_{nn}
\end{vmatrix} = a_{sr} A_{sr}
∣ A ∣ = a 11 ⋮ 0 ⋮ a n 1 ⋯ ⋱ ⋯ ⋱ ⋯ a 1 r ⋮ a sr ⋮ a n r ⋯ ⋱ ⋯ ⋱ ⋯ a 1 n ⋮ 0 ⋮ a nn = a sr A sr
/proof/“
∣ A ∣ |A| ∣ A ∣ 按第 r r r 列进行展开
∣ A ∣ = a 1 r A 1 r + a 2 r A 2 r + ⋯ + a s r A s r + ⋯ + a n r A n r |A| = a_{1r} A_{1r} + a_{2r} A_{2r} + \cdots + a_{sr} A_{sr} + \cdots + a_{nr} A_{nr} ∣ A ∣ = a 1 r A 1 r + a 2 r A 2 r + ⋯ + a sr A sr + ⋯ + a n r A n r
∀ i = s , A i r ≠ 0 \forall i = s, \quad A_{ir} \neq 0 ∀ i = s , A i r = 0
A i r 中至少有一行为0 ⟹ ∣ A ∣ = a s r A s r A_{ir} \text{ 中至少有一行为0} \implies |A| = a_{sr} A_{sr} A i r 中至少有一行为 0 ⟹ ∣ A ∣ = a sr A sr
引理3: ∣ A ∣ = a 11 A 11 + a 12 A 12 + ⋯ + a 1 n A 1 n |A| = a_{11} A_{11} + a_{12} A_{12} + \cdots + a_{1n} A_{1n} ∣ A ∣ = a 11 A 11 + a 12 A 12 + ⋯ + a 1 n A 1 n (按第 r r r 行进行展开)
(该结果可以推广至类似定理1的对偶结果)
/proof/
第r r r 行元素的拆分:
a r 1 = a 11 + 0 + ⋯ + 0 a r 2 = 0 + a 12 + ⋯ + 0 ⋯ ⋯ a r n = 0 + 0 + ⋯ + a 1 n a_{r1} = a_{11} + 0 + \cdots + 0\\
a_{r2} = 0 + a_{12} + \cdots + 0\\
\cdots \cdots\\
a_{rn} = 0 + 0 + \cdots + a_{1n}\\
a r 1 = a 11 + 0 + ⋯ + 0 a r 2 = 0 + a 12 + ⋯ + 0 ⋯⋯ a r n = 0 + 0 + ⋯ + a 1 n
⇒ ∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a r 1 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n 0 a r 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ⋯ + ∣ a 11 a 12 ⋯ a 1 n 0 0 ⋯ a r n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ \Rightarrow |A| =
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{r1} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
+\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & a_{r2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}+ \cdots +
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & 0 & \cdots & a_{rn} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}\\
⇒ ∣ A ∣ = a 11 a r 1 ⋮ a n 1 a 12 0 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n 0 ⋮ a nn + a 11 0 ⋮ a n 1 a 12 a r 2 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n 0 ⋮ a nn + ⋯ + a 11 0 ⋮ a n 1 a 12 0 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a r n ⋮ a nn
⇒ = a r 1 A r 1 + a r 2 A r 2 + ⋯ + a r n A r n \Rightarrow \quad = a_{r1} A_{r1} + a_{r2} A_{r2} + \cdots + a_{rn} A_{rn}
⇒ = a r 1 A r 1 + a r 2 A r 2 + ⋯ + a r n A r n
证毕.
定理4:设∣ A ∣ |A| ∣ A ∣ 为n n n 阶行列式,1 ≤ r , s ≤ n 1 \leq r, s \leq n 1 ≤ r , s ≤ n ,则
a r 1 A s 1 + a r 2 A s 2 + ⋯ + a r n A s n = δ r s ∣ A ∣ a_{r1} A_{s1} + a_{r2} A_{s2} + \cdots + a_{rn} A_{sn} = \delta_{rs} |A|
a r 1 A s 1 + a r 2 A s 2 + ⋯ + a r n A s n = δ rs ∣ A ∣
/proof/
若r = s r=s r = s 已证✓ \checkmark ✓ (引理3)
下不妨设r < s r<s r < s
构造新行列式,按s s s 行展开
0 = ∣ C ∣ = ∣ a 11 a 12 ⋯ a 1 n a r 1 a r 2 ⋯ a r n a r 1 a r 2 ⋯ a r n a n 1 a n 2 ⋯ a n n ∣ = a r 1 A s 1 + a r 2 A s 2 + ⋯ + a r n A s n 0 = |C| =
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{r1} & a_{r2} & \cdots & a_{rn} \\
a_{r1} & a_{r2} & \cdots & a_{rn} \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
= a_{r1} A_{s1} + a_{r2} A_{s2} + \cdots + a_{rn} A_{sn}
0 = ∣ C ∣ = a 11 a r 1 a r 1 a n 1 a 12 a r 2 a r 2 a n 2 ⋯ ⋯ ⋯ ⋯ a 1 n a r n a r n a nn = a r 1 A s 1 + a r 2 A s 2 + ⋯ + a r n A s n
证毕.
性质9的证明全部结束.
· 行列式的转置
我们先给出定义:
/Define/
定义:
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ , ∣ A ′ ∣ = ∣ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a n n ∣ |A| = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
\quad , \quad
|A'| = \begin{vmatrix}
a_{11} & a_{21} & \cdots & a_{n1} \\
a_{12} & a_{22} & \cdots & a_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1n} & a_{2n} & \cdots & a_{nn}
\end{vmatrix}
∣ A ∣ = a 11 a 21 ⋮ a n 1 a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn , ∣ A ′ ∣ = a 11 a 12 ⋮ a 1 n a 21 a 22 ⋮ a 2 n ⋯ ⋯ ⋱ ⋯ a n 1 a n 2 ⋮ a nn
即∣ A ′ ∣ |A'| ∣ A ′ ∣ 的第i i i 行,就是∣ A ∣ |A| ∣ A ∣ 的第i i i 列( A i ) (A_i) ( A i ) 。
性质8: ∣ A ′ ∣ = ∣ A ∣ |A'| = |A| ∣ A ′ ∣ = ∣ A ∣
/proof/
对阶数进行归纳 n = 1 n=1 n = 1 成立
n − 1 n-1 n − 1 阶成立 ✓ \checkmark ✓ 证n n n 阶
∣ A ∣ = a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 |A| = a_{11} M_{11} - a_{21} M_{21} + \cdots + (-1)^{n+1} a_{n1} M_{n1}
∣ A ∣ = a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1
∀ i , j \forall i, j ∀ i , j , N j i N_{ji} N ji 是 M i j M_{ij} M ij 的转置,
由归纳假设得 N j i = M i j N_{ji} = M_{ij} N ji = M ij , ∀ i , j \forall i, j ∀ i , j
∣ A ∣ = a 11 N 11 − a 21 N 21 + ⋯ + ( − 1 ) n + 1 a n 1 N n 1 = ∣ A ′ ∣ |A| = a_{11} N_{11} - a_{21} N_{21} + \cdots + (-1)^{n+1} a_{n1} N_{n1}
= |A'|
∣ A ∣ = a 11 N 11 − a 21 N 21 + ⋯ + ( − 1 ) n + 1 a n 1 N n 1 = ∣ A ′ ∣
(按照第一行进行转置)
到这里为止,相当于我们证好了/给出了行列式最一般的定义
并证明了n n n 阶行列式一定满足9条性质
n n n 元线性方程组的解是否和n n n 阶行列式有关呢?
Fragment 4 行列式的计算
· n n n 元线性方程组的解
( ∗ ) { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n (*) \quad
\begin{cases}
a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1 \\
a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2 \\
\vdots \\
a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{nn} x_n = b_n
\end{cases}
( ∗ ) ⎩ ⎨ ⎧ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a nn x n = b n
设(*)有解,系数行列式
∣ A ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ |A| = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
∣ A ∣ = a 11 a 21 ⋮ a n 1 a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
先考虑二阶、三阶时,分母不动
分子由数字列替换对应列,推广到 n n n 阶:
∣ A i ∣ = ∣ b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ b n a n 2 ⋯ a n n ∣ = ∣ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n a 12 ⋯ a 1 n a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n a n 2 ⋯ a n n ∣ |A_i| = \begin{vmatrix}
b_1 & a_{12} & \cdots & a_{1n} \\
b_2 & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_n & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = \begin{vmatrix}
a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n & a_{12} & \cdots & a_{1n} \\
a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{nn} x_n & a_{n2} & \cdots & a_{nn}
\end{vmatrix}
∣ A i ∣ = b 1 b 2 ⋮ b n a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn = a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a nn x n a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
利用性质化简
= ∣ a 11 x 1 a 12 ⋯ a 1 n a 21 x 1 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 x 1 a n 2 ⋯ a n n ∣ = x 1 ⋅ ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = x 1 ⋅ ∣ A ∣ = \begin{vmatrix}
a_{11} x_1 & a_{12} & \cdots & a_{1n} \\
a_{21} x_1 & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} x_1 & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = x_1 \cdot \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = x_1 \cdot |A|
= a 11 x 1 a 21 x 1 ⋮ a n 1 x 1 a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn = x 1 ⋅ a 11 a 21 ⋮ a n 1 a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn = x 1 ⋅ ∣ A ∣
若(*)有解,
⇒ x 1 = ∣ A 1 ∣ ∣ A ∣ , ⋯ , x n = ∣ A n ∣ ∣ A ∣ \Rightarrow \quad x_1=\frac {|A_1|}{|A|}\quad , \quad \cdots \quad , \quad x_n=\frac {|A_n|}{|A|}
⇒ x 1 = ∣ A ∣ ∣ A 1 ∣ , ⋯ , x n = ∣ A ∣ ∣ A n ∣
· Cramer 法则
若 ∣ A ∣ ≠ 0 |A| \neq 0 ∣ A ∣ = 0 ,则(*) 有唯一解,
x 1 = ∣ A 1 ∣ ∣ A ∣ , ⋯ , x n = ∣ A n ∣ ∣ A ∣ x_1=\frac {|A_1|}{|A|}\quad , \quad \cdots \quad , \quad x_n=\frac {|A_n|}{|A|}
x 1 = ∣ A ∣ ∣ A 1 ∣ , ⋯ , x n = ∣ A ∣ ∣ A n ∣
( ∗ ) { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n (*) \quad
\begin{cases}
a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1 \\
a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2 \\
\vdots \\
a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{nn} x_n = b_n
\end{cases}
( ∗ ) ⎩ ⎨ ⎧ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a nn x n = b n
/proof/
若 (*) 有解,则解必为如上形式。
此处仅证了存在的唯一性,未证解的存在性.
只要证明 x i = ∣ A i ∣ ∣ A ∣ x_i = \frac{|A_i|}{|A|} x i = ∣ A ∣ ∣ A i ∣ 确为 (*) 的解,即可.
其中
∣ A i ∣ = ∣ a 11 ⋯ b 1 ⋯ a 1 n a 21 ⋯ b 2 ⋯ a 2 n ⋮ ⋱ ⋮ ⋱ ⋮ a n 1 ⋯ b n ⋯ a n n ∣ |A_i| = \begin{vmatrix}
a_{11} & \cdots & b_1 & \cdots & a_{1n} \\
a_{21} & \cdots & b_2 & \cdots & a_{2n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & b_n & \cdots & a_{nn}
\end{vmatrix}
∣ A i ∣ = a 11 a 21 ⋮ a n 1 ⋯ ⋯ ⋱ ⋯ b 1 b 2 ⋮ b n ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
下面我们来证明解的存在性
/proof/
a 11 A s 1 + a r 2 A s 2 + ⋯ + a r n A s n = δ r s ∣ A ∣ a_{11} A_{s1} + a_{r2} A_{s2} + \cdots + a_{rn} A_{sn} = \delta_{rs} |A|
a 11 A s 1 + a r 2 A s 2 + ⋯ + a r n A s n = δ rs ∣ A ∣
∑ j = 1 n a i j A s j = δ r s ∣ A ∣ \sum_{j=1}^n a_{ij} A_{sj} = \delta_{rs} |A|
j = 1 ∑ n a ij A s j = δ rs ∣ A ∣
然后对行列式元素求和
∑ i = 1 m a i 1 + ∑ i = 1 m a i 2 + ⋯ + ∑ i = 1 m a i n = ∑ j = 1 n ∑ i = 1 m a i j \sum_{i=1}^m a_{i1} +\sum_{i=1}^m a_{i2}+\cdots + \sum_{i=1}^m a_{in}=\sum_{j=1}^n \sum_{i=1}^m a_{ij}
i = 1 ∑ m a i 1 + i = 1 ∑ m a i 2 + ⋯ + i = 1 ∑ m a in = j = 1 ∑ n i = 1 ∑ m a ij
这里注意一点:
∑ j = 1 n ∑ i = 1 m a i j = ∑ i = 1 m ∑ j = 1 n a i j \sum_{j=1}^n \sum_{i=1}^m a_{ij}=\sum_{i=1}^m \sum_{j=1}^n a_{ij}
j = 1 ∑ n i = 1 ∑ m a ij = i = 1 ∑ m j = 1 ∑ n a ij
以后若对一个长方形的二维行列式进行求和,如果行列括号的位置无改变,那么行列括号可以交换次序.
x j = ∣ A j ∣ ∣ A ∣ = 1 ∣ A ∣ ∑ i = 1 n b i A i j x_j = \frac{|A_j|}{|A|} = \frac{1}{|A|} \sum_{i=1}^n b_i A_{ij}
x j = ∣ A ∣ ∣ A j ∣ = ∣ A ∣ 1 i = 1 ∑ n b i A ij
验证(*) 的第k个方程:
∑ j = 1 n a k j x j = b k , ∀ k ≥ 1 \sum_{j=1}^n a_{kj} x_j = b_k\quad , \quad \forall k\geq 1
j = 1 ∑ n a kj x j = b k , ∀ k ≥ 1
∑ j = 1 n a k j x j = ∑ j = 1 n ( a k j 1 ∣ A ∣ ∑ i = 1 n b i A i j ) = 1 ∣ A ∣ ∑ j = 1 n ∑ i = 1 n a k j b i A i j = 1 ∣ A ∣ ∑ i = 1 n b i ( ∑ j = 1 n a k j A i j ) = 1 ∣ A ∣ ∑ i = 1 n b i δ k i ∣ A ∣ = b k ( i = k , 1 ; i ≠ k , 0 ) \begin{align*}
\sum_{j=1}^n a_{kj} x_j
&= \sum_{j=1}^n \left( a_{kj} \frac{1}{|A|} \sum_{i=1}^n b_i A_{ij} \right) = \frac{1}{|A|} \sum_{j=1}^n \sum_{i=1}^n a_{kj} b_i A_{ij}\\
&= \frac{1}{|A|} \sum_{i=1}^n b_i \left( \sum_{j=1}^n a_{kj} A_{ij} \right)\\
&= \frac{1}{|A|} \sum_{i=1}^n b_i \delta_{ki} |A| = b_k \quad (i=k, 1; i \neq k, 0)
\end{align*}
j = 1 ∑ n a kj x j = j = 1 ∑ n ( a kj ∣ A ∣ 1 i = 1 ∑ n b i A ij ) = ∣ A ∣ 1 j = 1 ∑ n i = 1 ∑ n a kj b i A ij = ∣ A ∣ 1 i = 1 ∑ n b i ( j = 1 ∑ n a kj A ij ) = ∣ A ∣ 1 i = 1 ∑ n b i δ ki ∣ A ∣ = b k ( i = k , 1 ; i = k , 0 )
有了Cramer法则后,相当于把求解n n n 元线性方程组的问题转化成求计算行列式的问题。
当阶数n n n 过大,仅按定义(某行、列)展开,计算量太大。
有无方法?(√)
/review/
∣ A ∣ = ∣ a 11 ⋯ a 1 s ⋯ a 1 m ⋮ ⋱ ⋮ ⋱ ⋮ 0 ⋯ a r s ⋯ 0 ⋮ ⋱ ⋮ ⋱ ⋮ a n 1 ⋯ a n s ⋯ a n n ∣ = a r s A r s |A| = \begin{vmatrix} a_{11} & \cdots & a_{1s} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & a_{rs} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ns} & \cdots & a_{nn} \end{vmatrix} = a_{rs} A_{rs}
∣ A ∣ = a 11 ⋮ 0 ⋮ a n 1 ⋯ ⋱ ⋯ ⋱ ⋯ a 1 s ⋮ a rs ⋮ a n s ⋯ ⋱ ⋯ ⋱ ⋯ a 1 m ⋮ 0 ⋮ a nn = a rs A rs
降阶法:
计算行列式的值时,利用行列式的性质, 将行列式的某行或某一列化出尽可能多的零, 再按这一行或这一列展开,进行降阶处理。
性质3:行列式的某一行或某一列乘C,得到的值是原来行列式的C倍
性质7:行列式的某一行乘以一个数加到另外一行上或者某一列乘以一个数加到另外一行上,行列式的值不改变
当拿到一个数字行列式:
0集中在什么地方
看1、-1在什么地方,可填同行(列)其它元素
我们接下来给出一些例题:
/example/ 求解这个行列式
∣ A ∣ = ∣ 1 0 2 1 2 − 1 1 0 1 0 0 3 − 1 0 2 1 ∣ |A| = \begin{vmatrix}
1 & 0 & 2 & 1 \\
2 & -1 & 1 & 0 \\
1 & 0 & 0 & 3 \\
-1 & 0 & 2 & 1\\
\end{vmatrix}
∣ A ∣ = 1 2 1 − 1 0 − 1 0 0 2 1 0 2 1 0 3 1
/proof/
按第2列展开
( − 1 ) ∣ 1 2 1 1 0 3 − 1 2 1 ∣ = ( − 1 ) ∣ 1 − 2 1 0 − 2 2 0 4 2 ∣ = ( − 1 ) ∣ − 2 2 4 2 ∣ = 12 (-1) \begin{vmatrix}
1 & 2 & 1 \\
1 & 0 & 3 \\
-1 & 2 & 1
\end{vmatrix}
=(-1)
\begin {vmatrix}
1 & -2 & 1 \\
0 & -2 & 2 \\
0 & 4 & 2 \\
\end {vmatrix}
=(-1)
\begin {vmatrix}
-2 & 2 \\
4 & 2 \\
\end {vmatrix}
=12
( − 1 ) 1 1 − 1 2 0 2 1 3 1 = ( − 1 ) 1 0 0 − 2 − 2 4 1 2 2 = ( − 1 ) − 2 4 2 2 = 12
证毕.
/example/ 求解行列式
∣ A ∣ = ∣ 7 3 1 − 5 2 6 − 3 0 3 11 − 1 4 − 6 5 2 − 9 ∣ |A| = \begin{vmatrix}
7 & 3 & 1 & -5 \\
2 & 6 & -3 & 0 \\
3 & 11 & -1 & 4 \\
-6 & 5 & 2 & -9
\end{vmatrix}
∣ A ∣ = 7 2 3 − 6 3 6 11 5 1 − 3 − 1 2 − 5 0 4 − 9
/proof/
= ∣ 7 3 1 − 5 23 15 0 − 15 10 14 0 − 1 − 20 − 1 0 1 ∣ = ∣ 23 15 − 15 10 14 − 1 − 20 − 1 1 ∣ = = ∣ − 277 0 0 − 10 15 0 − 20 − 1 1 ∣ = − 277 × 13 = − 3601 = \begin{vmatrix} 7 & 3 & 1 & -5 \\ 23 & 15 & 0 & -15 \\ 10 & 14 & 0 & -1 \\ -20 & -1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 23 & 15 & -15 \\ 10 & 14 & -1 \\ -20 & -1 & 1 \end{vmatrix}=
= \begin{vmatrix}
-277 & 0 & 0 \\
-10 & 15 & 0 \\
-20 & -1 & 1
\end{vmatrix} = -277 \times 13 = -3601
= 7 23 10 − 20 3 15 14 − 1 1 0 0 0 − 5 − 15 − 1 1 = 23 10 − 20 15 14 − 1 − 15 − 1 1 == − 277 − 10 − 20 0 15 − 1 0 0 1 = − 277 × 13 = − 3601
结束.
/example/
∣ A ∣ = ∣ 3 6 12 2 − 3 0 5 1 2 ∣ |A| = \begin{vmatrix} 3 & 6 & 12 \\ 2 & -3 & 0 \\ 5 & 1 & 2 \end{vmatrix}
∣ A ∣ = 3 2 5 6 − 3 1 12 0 2
/proof/
3 ∣ 1 2 4 2 − 3 0 5 1 2 ∣ = 6 ∣ 1 2 4 2 − 3 0 5 1 2 ∣ = 6 ∣ 1 2 2 2 − 3 0 5 1 1 ∣ = 6 × ( − 9 ) × ( − 3 ) = 162 3 \begin{vmatrix} 1 & 2 & 4 \\ 2 & -3 & 0 \\ 5 & 1 & 2 \end{vmatrix}
=6\begin{vmatrix}
1 & 2 & 4 \\
2 & -3 & 0 \\
5 & 1 & 2
\end{vmatrix}
= 6 \begin{vmatrix}
1 & 2 & 2 \\
2 & -3 & 0 \\
5 & 1 & 1
\end{vmatrix}
= 6 \times (-9) \times (-3) = 162
3 1 2 5 2 − 3 1 4 0 2 = 6 1 2 5 2 − 3 1 4 0 2 = 6 1 2 5 2 − 3 1 2 0 1 = 6 × ( − 9 ) × ( − 3 ) = 162
结束.
· 文字行列式
数字行列式 ⟶ \longrightarrow ⟶ 文字行列式(元素中含未定元)
降阶法、递推法、求和法、提取因子法、拆分法
· Vandermonde 行列式
V n = ∣ 1 x 1 x 1 2 ⋯ x 1 n − 2 x 1 n − 1 1 x 2 x 2 2 ⋯ x 2 n − 2 x 2 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 x n − 1 x n − 1 2 ⋯ x n − 1 n − 2 x n − 1 n − 1 1 x n x n 2 ⋯ x n n − 2 x n n − 1 ∣ V_n = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-2} & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-2} & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-2} & x_{n-1}^{n-1} \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-2} & x_n^{n-1} \end{vmatrix}
V n = 1 1 ⋮ 1 1 x 1 x 2 ⋮ x n − 1 x n x 1 2 x 2 2 ⋮ x n − 1 2 x n 2 ⋯ ⋯ ⋱ ⋯ ⋯ x 1 n − 2 x 2 n − 2 ⋮ x n − 1 n − 2 x n n − 2 x 1 n − 1 x 2 n − 1 ⋮ x n − 1 n − 1 x n n − 1
/proof/
= ∣ 1 x 1 − x n x 1 2 − x 1 x n ⋯ x 1 n − 2 − x 1 n − 3 x n x 1 n − 1 − x 1 n − 2 x n 1 x 2 − x n x 2 2 − x 2 x n ⋯ x 2 n − 2 − x 2 n − 3 x n x 2 n − 1 − x 2 n − 2 x n ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 x n − 1 − x n x n − 1 2 − x n − 1 x n ⋯ x n − 1 n − 2 − x n − 1 n − 3 x n x n − 1 n − 1 − x n − 1 n − 2 x n 1 0 0 ⋯ 0 0 ∣ = \begin{vmatrix}
1 & x_1 - x_n & x_1^2 - x_1 x_n & \cdots & x_1^{n-2} - x_1^{n-3} x_n & x_1^{n-1} - x_1^{n-2} x_n \\
1 & x_2 - x_n & x_2^2 - x_2 x_n & \cdots & x_2^{n-2} - x_2^{n-3} x_n & x_2^{n-1} - x_2^{n-2} x_n \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{n-1} - x_n & x_{n-1}^2 - x_{n-1} x_n & \cdots & x_{n-1}^{n-2} - x_{n-1}^{n-3} x_n & x_{n-1}^{n-1} - x_{n-1}^{n-2} x_n \\
1 & 0 & 0 & \cdots & 0 & 0
\end{vmatrix}
= 1 1 ⋮ 1 1 x 1 − x n x 2 − x n ⋮ x n − 1 − x n 0 x 1 2 − x 1 x n x 2 2 − x 2 x n ⋮ x n − 1 2 − x n − 1 x n 0 ⋯ ⋯ ⋱ ⋯ ⋯ x 1 n − 2 − x 1 n − 3 x n x 2 n − 2 − x 2 n − 3 x n ⋮ x n − 1 n − 2 − x n − 1 n − 3 x n 0 x 1 n − 1 − x 1 n − 2 x n x 2 n − 1 − x 2 n − 2 x n ⋮ x n − 1 n − 1 − x n − 1 n − 2 x n 0
按照最后一行进行展开
= ( − 1 ) n + 1 ∣ x 1 − x n x 1 2 − x 1 x n ⋯ x 1 n − 2 − x 1 n − 3 x n x 1 n − 1 − x 1 n − 2 x n x 2 − x n x 2 2 − x 2 x n ⋯ x 2 n − 2 − x 2 n − 3 x n x 2 n − 1 − x 2 n − 2 x n ⋮ ⋮ ⋱ ⋮ ⋮ x n − 1 − x n x n − 1 2 − x n − 1 x n ⋯ x n − 1 n − 2 − x n − 1 n − 3 x n x n − 1 n − 1 − x n − 1 n − 2 x n ∣ =(-1)^{n+1}
\begin{vmatrix}
x_1 - x_n & x_1^2 - x_1 x_n & \cdots & x_1^{n-2} - x_1^{n-3} x_n & x_1^{n-1} - x_1^{n-2} x_n \\
x_2 - x_n & x_2^2 - x_2 x_n & \cdots & x_2^{n-2} - x_2^{n-3} x_n & x_2^{n-1} - x_2^{n-2} x_n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{n-1} - x_n & x_{n-1}^2 - x_{n-1} x_n & \cdots & x_{n-1}^{n-2} - x_{n-1}^{n-3} x_n & x_{n-1}^{n-1} - x_{n-1}^{n-2} x_n \\
\end{vmatrix}
= ( − 1 ) n + 1 x 1 − x n x 2 − x n ⋮ x n − 1 − x n x 1 2 − x 1 x n x 2 2 − x 2 x n ⋮ x n − 1 2 − x n − 1 x n ⋯ ⋯ ⋱ ⋯ x 1 n − 2 − x 1 n − 3 x n x 2 n − 2 − x 2 n − 3 x n ⋮ x n − 1 n − 2 − x n − 1 n − 3 x n x 1 n − 1 − x 1 n − 2 x n x 2 n − 1 − x 2 n − 2 x n ⋮ x n − 1 n − 1 − x n − 1 n − 2 x n
根据性质化简展开
= ( − 1 ) n + 1 ( x 1 − x n ) ( x 2 − x n ) ⋯ ( x n − 1 − x n ) ⋅ ∣ 1 x 1 ⋯ x 1 n − 3 x 1 n − 2 1 x 2 ⋯ x 2 n − 3 x 2 n − 2 ⋮ ⋮ ⋱ ⋮ ⋮ 1 x n − 1 ⋯ x n − 1 n − 3 x n − 1 n − 2 ∣ = (-1)^{n+1} (x_1 - x_n) (x_2 - x_n) \cdots (x_{n-1} - x_n) \cdot \begin{vmatrix} 1 & x_1 & \cdots & x_1^{n-3} & x_1^{n-2} \\ 1 & x_2 & \cdots & x_2^{n-3} & x_2^{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n-1} & \cdots & x_{n-1}^{n-3} & x_{n-1}^{n-2} \end{vmatrix}
= ( − 1 ) n + 1 ( x 1 − x n ) ( x 2 − x n ) ⋯ ( x n − 1 − x n ) ⋅ 1 1 ⋮ 1 x 1 x 2 ⋮ x n − 1 ⋯ ⋯ ⋱ ⋯ x 1 n − 3 x 2 n − 3 ⋮ x n − 1 n − 3 x 1 n − 2 x 2 n − 2 ⋮ x n − 1 n − 2
化为递推式:
⟹ V n = ( x n − x 1 ) ( x n − x 2 ) ⋯ ( x n − x n − 1 ) V n − 1 ⟹ V n = ∏ 1 ≤ i < j ≤ n ( x j − x i ) \implies V_n = (x_n - x_1) (x_n - x_2) \cdots (x_n - x_{n-1}) V_{n-1} \\
\implies V_n = \prod_{1 \leq i < j \leq n} (x_j - x_i)
⟹ V n = ( x n − x 1 ) ( x n − x 2 ) ⋯ ( x n − x n − 1 ) V n − 1 ⟹ V n = 1 ≤ i < j ≤ n ∏ ( x j − x i )
事实上,我们有时候也会用到未定元降幂排列.
V n = ∣ x 1 n − 1 x 1 n − 2 ⋯ x 1 1 x 2 n − 1 x 2 n − 2 ⋯ x 2 1 ⋮ ⋮ ⋱ ⋮ ⋮ x n n − 1 x n n − 2 ⋯ x n 1 ∣ V_n = \begin{vmatrix}
x_1^{n-1} & x_1^{n-2} & \cdots & x_1 & 1 \\
x_2^{n-1} & x_2^{n-2} & \cdots & x_2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_n^{n-1} & x_n^{n-2} & \cdots & x_n& 1 \\ \end{vmatrix}
V n = x 1 n − 1 x 2 n − 1 ⋮ x n n − 1 x 1 n − 2 x 2 n − 2 ⋮ x n n − 2 ⋯ ⋯ ⋱ ⋯ x 1 x 2 ⋮ x n 1 1 ⋮ 1
( n − 1 ) + ( n − 2 ) + ⋯ + 1 = n ( n − 1 ) 2 (n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2} ( n − 1 ) + ( n − 2 ) + ⋯ + 1 = 2 n ( n − 1 ) 次列换对换
V ~ n = ( − 1 ) n ( n − 1 ) 2 V n = ∏ 1 ≤ i < j ≤ n ( x i − x j ) \widetilde{V}_n = (-1)^{\frac{n(n-1)}{2}} V_n = \prod_{1 \leq i < j \leq n} (x_i - x_j)
V n = ( − 1 ) 2 n ( n − 1 ) V n = 1 ≤ i < j ≤ n ∏ ( x i − x j )
结束.
· 递推法
/example/ 多项式的友阵的特征多项式
F n = ∣ λ 0 ⋯ 0 a n − 1 λ ⋯ 0 a n − 1 ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 ⋯ λ a 2 0 0 ⋯ − 1 λ + a 1 ∣ F_n =
\begin{vmatrix}
\lambda & 0 & \cdots & 0 & a_n \\
-1 & \lambda & \cdots & 0 & a_{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda & a_2 \\
0 & 0 & \cdots & -1 & \lambda + a_1
\end{vmatrix}
F n = λ − 1 ⋮ 0 0 0 λ ⋮ 0 0 ⋯ ⋯ ⋱ ⋯ ⋯ 0 0 ⋮ λ − 1 a n a n − 1 ⋮ a 2 λ + a 1
/proof/
按第一行展开:
F n = ( − 1 ) n + 1 λ ⋅ F n − 1 + ( − 1 ) n + 1 a n ( − 1 ) n − 1 = λ ⋅ F n − 1 + a n , F 1 = λ + a 1 = λ ( λ F n − 2 + a n − 1 ) + a n = λ 2 F n − 2 + a n − 1 λ + a n = λ ( λ F n − 2 + a n − 1 ) + a n = λ 2 F n − 2 + a n − 1 λ + a n \begin{align*}
F_n &= (-1)^{n+1} \lambda \cdot F_{n-1} + (-1)^{n+1} a_n (-1)^{n-1} = \lambda \cdot F_{n-1} + a_n, \quad F_1 = \lambda + a_1\\
&= \lambda (\lambda F_{n-2} + a_{n-1}) + a_n = \lambda^2 F_{n-2} + a_{n-1} \lambda + a_n\\
&= \lambda (\lambda F_{n-2} + a_{n-1}) + a_n = \lambda^2 F_{n-2} + a_{n-1} \lambda + a_n
\end{align*}
F n = ( − 1 ) n + 1 λ ⋅ F n − 1 + ( − 1 ) n + 1 a n ( − 1 ) n − 1 = λ ⋅ F n − 1 + a n , F 1 = λ + a 1 = λ ( λ F n − 2 + a n − 1 ) + a n = λ 2 F n − 2 + a n − 1 λ + a n = λ ( λ F n − 2 + a n − 1 ) + a n = λ 2 F n − 2 + a n − 1 λ + a n
结束.
· 求和法
/example/
∣ A ∣ = ∣ x a a ⋯ a a a x a ⋯ a a ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ a a a ⋯ x a a a a ⋯ a x ∣ |A| = \begin{vmatrix} x & a & a & \cdots & a & a \\ a & x & a & \cdots & a & a \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a & a & a & \cdots & x & a \\ a & a & a & \cdots & a & x \end{vmatrix}
∣ A ∣ = x a ⋮ a a a x ⋮ a a a a ⋮ a a ⋯ ⋯ ⋱ ⋯ ⋯ a a ⋮ x a a a ⋮ a x
/proof/
利用性质7
= ∣ x + ( n − 1 ) a x + ( n − 2 ) a x + ( n − 3 ) a ⋯ x + ( n − 1 ) a a x a ⋯ a ⋮ ⋮ ⋮ ⋱ ⋮ a a a ⋯ x ∣ = \begin{vmatrix} x + (n-1)a & x + (n-2)a & x + (n-3)a & \cdots & x + (n-1)a \\ a & x & a & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{vmatrix}
= x + ( n − 1 ) a a ⋮ a x + ( n − 2 ) a x ⋮ a x + ( n − 3 ) a a ⋮ a ⋯ ⋯ ⋱ ⋯ x + ( n − 1 ) a a ⋮ x
再进行展开
= ( x + ( n − 1 ) a ) ⋅ ∣ 1 1 1 ⋯ 1 a x a ⋯ a ⋮ ⋮ ⋮ ⋱ ⋮ a a a ⋯ x ∣ = ( x + ( n − 1 ) a ) ⋅ ∣ 1 1 1 ⋯ 1 0 x − a 0 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ x − a ∣ = (x + (n-1)a) \cdot \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & x & a & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{vmatrix} = (x + (n-1)a) \cdot \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & x-a & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & x-a \end{vmatrix}
= ( x + ( n − 1 ) a ) ⋅ 1 a ⋮ a 1 x ⋮ a 1 a ⋮ a ⋯ ⋯ ⋱ ⋯ 1 a ⋮ x = ( x + ( n − 1 ) a ) ⋅ 1 0 ⋮ 0 1 x − a ⋮ 0 1 0 ⋮ 0 ⋯ ⋯ ⋱ ⋯ 1 0 ⋮ x − a
容易发现这是一个上三角行列式
= ( x + ( n − 1 ) a ) ( x − a ) n − 1 = (x + (n-1)a) (x-a)^{n-1}
= ( x + ( n − 1 ) a ) ( x − a ) n − 1
结束.
· 提取因子法
/example/
∣ A ∣ = ∣ x y z w y x w z z w x y w z y x ∣ |A| = \begin{vmatrix} x & y & z & w \\ y & x & w & z \\ z & w & x & y \\ w & z & y & x \end{vmatrix}
∣ A ∣ = x y z w y x w z z w x y w z y x
/proof/
强行拆解会非常麻烦
通过观察我们可以发现每一行和相同
start!
= ∣ x + y + z + w y z w x + y + z + w x w z x + y + z + w z w x x + y + z + w w x y ∣ = ( A ) ∣ 1 y z w 1 x w z 1 z w x 1 w x y ∣ = \begin{vmatrix}
x+y+z+w & y & z & w \\
x+y+z+w & x & w & z \\
x+y+z+w & z & w & x \\
x+y+z+w & w & x & y
\end{vmatrix}
=(A)
\begin{vmatrix}
1 & y & z & w \\
1 & x & w & z \\
1 & z & w & x \\
1 & w & x & y
\end{vmatrix}
= x + y + z + w x + y + z + w x + y + z + w x + y + z + w y x z w z w w x w z x y = ( A ) 1 1 1 1 y x z w z w w x w z x y
A = x + y + z + w A=x+y+z+w A = x + y + z + w
然后利用性质化简
= ( A ) ∣ 1 y z w 0 x − y w − z z − w 0 w − y x − z y − w 0 z − y y − z x − w ∣ = (A)
\begin{vmatrix}
1 & y & z & w \\
0 & x-y & w-z & z-w \\
0 & w-y & x-z & y-w \\
0 & z-y & y-z & x-w
\end{vmatrix}
= ( A ) 1 0 0 0 y x − y w − y z − y z w − z x − z y − z w z − w y − w x − w
然后按照第一列展开
= ( A ) ∣ x − y w − z z − w w − y z − z y − w z − y y − z x − w ∣ =(A)\begin{vmatrix}
x-y & w-z & z-w \\
w-y & z-z & y-w \\
z-y & y-z & x-w
\end{vmatrix}
= ( A ) x − y w − y z − y w − z z − z y − z z − w y − w x − w
然后在列上使用性质7
= ∣ x + w − y − z w − z 0 x + w − y − z x − z x + y − z − w 0 y − z x + y − z − w ∣ =\begin{vmatrix} x+w-y-z & w-z & 0 \\ x+w-y-z & x-z & x+y-z-w \\ 0 & y-z & x+y-z-w \end{vmatrix}
= x + w − y − z x + w − y − z 0 w − z x − z y − z 0 x + y − z − w x + y − z − w
提取公因子
= ( A B C ) ∣ 1 w − z 0 1 x − z 1 0 y − z 1 ∣ = ( A B C ) ∣ 1 w − z 0 0 x − w 1 0 y − z 1 ∣ =(ABC)
\begin{vmatrix}
1 & w-z & 0 \\
1 & x-z & 1 \\
0 & y-z & 1
\end{vmatrix}
=(ABC)
\begin{vmatrix}
1 & w-z & 0 \\
0 & x-w & 1 \\
0 & y-z & 1
\end{vmatrix}
= ( A BC ) 1 1 0 w − z x − z y − z 0 1 1 = ( A BC ) 1 0 0 w − z x − w y − z 0 1 1
B = x + w − y − z B=x+w-y-z B = x + w − y − z
C = x + y − z − w C=x+y-z-w C = x + y − z − w
按照第一列进行展开
= ( A B C ) ∣ 1 w − z 0 0 x − w 1 0 y − z 1 ∣ = ( A B C ) ∣ x − w 1 y − z 1 ∣ =(ABC)
\begin{vmatrix}
1 & w-z & 0 \\
0 & x-w & 1 \\
0 & y-z & 1
\end{vmatrix}
=(ABC)
\begin{vmatrix}
x-w & 1 \\
y-z & 1
\end{vmatrix}
= ( A BC ) 1 0 0 w − z x − w y − z 0 1 1 = ( A BC ) x − w y − z 1 1
结束.
· 拆分法
/example/ 证明
∣ a x + b y a y + b z a z + b x a y + b z a z + b x a x + b y a z + b x a x + b y a y + b z ∣ = ( a 3 + b 3 ) ∣ x y z y z x z x y ∣ \begin{vmatrix}
ax + by & ay + bz & az + bx \\
ay + bz & az + bx & ax + by \\
az + bx & ax + by & ay + bz
\end{vmatrix}
= (a^3 + b^3)
\begin{vmatrix}
x & y & z \\
y & z & x \\
z & x & y
\end{vmatrix}
a x + b y a y + b z a z + b x a y + b z a z + b x a x + b y a z + b x a x + b y a y + b z = ( a 3 + b 3 ) x y z y z x z x y
/proof/
= ∣ a x a y + b z a z + b x a y a z + b x a x + b y a z a x + b y a y + b z ∣ + ∣ b y a y + b z a z + b x b z a z + b x a x + b y b x a x + b y a y + b z ∣ = \begin{vmatrix} ax & ay + bz & az + bx \\ ay & az + bx & ax + by \\ az & ax + by & ay + bz \end{vmatrix} + \begin{vmatrix} by & ay + bz & az + bx \\ bz & az + bx & ax + by \\ bx & ax + by & ay + bz \end{vmatrix}
= a x a y a z a y + b z a z + b x a x + b y a z + b x a x + b y a y + b z + b y b z b x a y + b z a z + b x a x + b y a z + b x a x + b y a y + b z
后续过程略.
/example/ 证明
∣ A ∣ = ∣ ( a + b ) 2 c 2 c 2 a 2 ( b + c ) 2 a 2 b 2 b 2 ( c + a ) 2 ∣ = 2 a b c ( a + b + c ) 3 |A| = \begin{vmatrix} (a+b)^2 & c^2 & c^2 \\ a^2 & (b+c)^2 & a^2 \\ b^2 & b^2 & (c+a)^2 \end{vmatrix} = 2abc(a+b+c)^3
∣ A ∣ = ( a + b ) 2 a 2 b 2 c 2 ( b + c ) 2 b 2 c 2 a 2 ( c + a ) 2 = 2 ab c ( a + b + c ) 3
/proof/
如果算功好的化可以展开合并同类项
但是也可以用行列式性质
= ∣ ( a + b ) 2 − c 2 c 2 0 a 2 − ( b + c ) 2 ( b + c ) 2 a 2 − ( b + c ) 2 0 b 2 ( c + a ) 2 − b 2 ∣ = \begin{vmatrix} (a+b)^2 - c^2 & c^2 & 0 \\ a^2 - (b+c)^2 & (b+c)^2 & a^2 - (b+c)^2 \\ 0 & b^2 & (c+a)^2 - b^2 \end{vmatrix}
= ( a + b ) 2 − c 2 a 2 − ( b + c ) 2 0 c 2 ( b + c ) 2 b 2 0 a 2 − ( b + c ) 2 ( c + a ) 2 − b 2
提取公因式:
= ( a + b + c ) 2 ∣ a + b − c c 2 0 a − b − c ( b + c ) 2 a + b − c 0 b 2 a + c − b ∣ = (a+b+c)^2 \begin{vmatrix} a+b-c & c^2 & 0 \\ a-b-c & (b+c)^2 & a+b-c \\ 0 & b^2 & a+c-b \end{vmatrix}
= ( a + b + c ) 2 a + b − c a − b − c 0 c 2 ( b + c ) 2 b 2 0 a + b − c a + c − b
简化 ( b + c ) 2 (b+c)^2 ( b + c ) 2
= ( a + b + c ) 2 ∣ a + b − c c 2 0 − 2 b 2 b c − 2 c 0 b a + c − b ∣ = ( a + b + c ) 2 ∣ a + b − c c 2 ( a + b + c ) 0 − 2 b 0 − 2 c 0 b 2 ( a + b + c ) a + c − b ∣ = (a+b+c)^2 \begin{vmatrix} a+b-c & c^2 & 0 \\ -2b & 2bc & -2c \\ 0 & b & a+c-b \end{vmatrix} = (a+b+c)^2 \begin{vmatrix} a+b-c & \frac{c}{2}(a+b+c) & 0 \\ -2b & 0 & -2c \\ 0 & \frac{b}{2}(a+b+c) & a+c-b \end{vmatrix}
= ( a + b + c ) 2 a + b − c − 2 b 0 c 2 2 b c b 0 − 2 c a + c − b = ( a + b + c ) 2 a + b − c − 2 b 0 2 c ( a + b + c ) 0 2 b ( a + b + c ) 0 − 2 c a + c − b
因为 2 b c 2bc 2 b c 的存在,还是无法简化
再次利用性质
= ( a + b + c ) 2 ∣ a + b − c c 2 ( a + b + c ) 0 − 2 b 0 − 2 c 0 b 2 ( a + b + c ) a + c − b ∣ = (a+b+c)^2 \begin{vmatrix} a+b-c & \frac{c}{2}(a+b+c) & 0 \\ -2b & 0 & -2c \\ 0 & \frac{b}{2}(a+b+c) & a+c-b \end{vmatrix}
= ( a + b + c ) 2 a + b − c − 2 b 0 2 c ( a + b + c ) 0 2 b ( a + b + c ) 0 − 2 c a + c − b
再次提取公因式
= ( a + b + c ) 3 ∣ a + b − c c 2 0 − 2 b 0 − 2 c 0 b 2 a + c − b ∣ = (a+b+c)^3 \begin{vmatrix} a+b-c & \frac{c}{2} & 0 \\ -2b & 0 & -2c \\ 0 & \frac{b}{2} & a+c-b \end{vmatrix}
= ( a + b + c ) 3 a + b − c − 2 b 0 2 c 0 2 b 0 − 2 c a + c − b
= ( a + b + c ) 3 [ ( a + b − c ) ⋅ b c − ( − 2 b ) ( c 2 ) ( a + c − b ) ] = 2 a b c ( a + b + c ) 3 = (a+b+c)^3 \left[ (a+b-c) \cdot bc - (-2b) \left( \frac{c}{2} \right) (a+c-b) \right]\\
= 2abc(a+b+c)^3
= ( a + b + c ) 3 [ ( a + b − c ) ⋅ b c − ( − 2 b ) ( 2 c ) ( a + c − b ) ] = 2 ab c ( a + b + c ) 3
证毕.
Fragment 5 行列式的等价定义
这两部分(等价定义+ Laplace 定理)相较高等代数对线性代数的要求没那么高
已发展行列式的整套理论,此处从性质入手,得到行列式的组合定义.
/Define/
记 1 , 2 , … , n 1, 2, \ldots, n 1 , 2 , … , n 全排列全体为 S n S_n S n , S n = n ! S_n = n! S n = n !
在一个全排列中,指标从小到大为常序排列(只有一个 1 , 2 , … , n 1, 2, \ldots, n 1 , 2 , … , n )(常序排列逆序数等于 0 0 0 ) 否则称为逆序排列。
若 j > i j > i j > i 且 j j j 排在 i i i 之前,则称 ( j , i ) (j, i) ( j , i ) 为一个逆序对。
对全排列 ( k 1 , k 2 , … , k n ) (k_1, k_2, \ldots, k_n) ( k 1 , k 2 , … , k n ) ,其中逆序对的总个数称为全排列的逆序数,记为 N ( k 1 , k 2 , … , k n ) N(k_1, k_2, \ldots, k_n) N ( k 1 , k 2 , … , k n )
逆序数的求法:
设全排列为 ( k 1 , k 2 , … , k n ) (k_1, k_2, \ldots, k_n) ( k 1 , k 2 , … , k n ) -
看 k 1 k_1 k 1 后面有几个数比它小,记为 m 1 m_1 m 1 个
看 k 2 k_2 k 2 后面有几个数比它小,记为 m 2 m_2 m 2 个
⋯ ⋯ \cdots \cdots ⋯⋯
看 k n − 1 k_{n-1} k n − 1 后面有几个数比它小,记为 m n − 1 m_{n-1} m n − 1 个
于是 N ( k 1 , k 2 , … , k n ) = m 1 + m 2 + ⋯ + m n − 1 N(k_1, k_2, \ldots, k_n) = m_1 + m_2 + \cdots + m_{n-1} N ( k 1 , k 2 , … , k n ) = m 1 + m 2 + ⋯ + m n − 1
/example/ 求 N ( 4 , 1 , 3 , 5 , 2 ) = 3 + 0 + 1 + 1 = 5 N(4, 1, 3, 5, 2) = 3 + 0 + 1 + 1 = 5 N ( 4 , 1 , 3 , 5 , 2 ) = 3 + 0 + 1 + 1 = 5
/proof/
m 1 = 3 , m 2 = 0 , m 3 = 1 , m 4 = 1 m_1 = 3, \quad m_2 = 0, \quad m_3 = 1, \quad m_4 = 1 m 1 = 3 , m 2 = 0 , m 3 = 1 , m 4 = 1
/Define/
若 N ( k 1 , k 2 , ⋯ , k n ) = { 偶数 奇数 N(k_1, k_2, \cdots, k_n)=\begin{cases} \text{偶数} \\ \text{奇数} \end{cases} N ( k 1 , k 2 , ⋯ , k n ) = { 偶数 奇数
则称 N ( k 1 , k 2 , ⋯ , k n ) = { 偶排列 奇排列 N(k_1, k_2, \cdots, k_n)=\begin{cases} \text{偶排列} \\ \text{奇排列} \end{cases} N ( k 1 , k 2 , ⋯ , k n ) = { 偶排列 奇排列