基础微积分-微分

其实如果是正常的讲解,我们大可以跳过一些引例直接切入主要矛盾,只不过——

我们有时候并不知晓为什么不这样做

Fragment 1 导数

· 概念引入

当一个物体做理想的直线运动时,若它在时间间隔 tt 内走过的路程为 SS,则我们定义它的速率为

vSt.v \equiv \frac{S}{t}.

而速度的方向则由物体的运动方向决定。因此,我们有

v=vel.\mathbf{v} = v \mathbf{e}_l.

然而,在实际的运动过程中,物体一般是不断改变速率和运动方向的。为了描述这种运动,我们需要引入即时速度的概念。

假设在时刻 t0t_0,物体所处位置的矢量为 r(t0)\mathbf{r}(t_0)。而在时刻 t0+Δtt_0 + \Delta t,它所处的位置矢量为 r(t0+Δt)\mathbf{r}(t_0 + \Delta t)。将两个向量的差记作

Δr=r(t0+Δt)r(t0)\Delta \mathbf{r} = \mathbf{r}(t_0 + \Delta t) - \mathbf{r}(t_0)

=[x(t0+Δt)x(t0)]i+[y(t0+Δt)y(t0)]j+[z(t0+Δt)z(t0)]k.= [x(t_0 + \Delta t) - x(t_0)] \mathbf{i} + [y(t_0 + \Delta t) - y(t_0)] \mathbf{j} + [z(t_0 + \Delta t) - z(t_0)] \mathbf{k}.

那么,在时刻 t0t_0 时,我们定义物体的即时运动速度为

v(t0)=limΔt0ΔrΔt\mathbf{v}(t_0) = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t}

=limΔt0x(t0+Δt)x(t0)Δti+limΔt0y(t0+Δt)y(t0)Δtj+limΔt0z(t0+Δt)z(t0)Δtk= \lim_{\Delta t \to 0} \frac{x(t_0 + \Delta t) - x(t_0)}{\Delta t} \mathbf{i} + \lim_{\Delta t \to 0} \frac{y(t_0 + \Delta t) - y(t_0)}{\Delta t} \mathbf{j} + \lim_{\Delta t \to 0} \frac{z(t_0 + \Delta t) - z(t_0)}{\Delta t} \mathbf{k}

=x˙(t0)i+y˙(t0)j+z˙(t0)k.= \dot{x}(t_0) \mathbf{i} + \dot{y}(t_0) \mathbf{j} + \dot{z}(t_0) \mathbf{k}.

这里,x˙(t0)\dot{x}(t_0), y˙(t0)\dot{y}(t_0)z˙(t0)\dot{z}(t_0) 称为相应的函数 x(t)x(t), y(t)y(t)z(t)z(t) 在时刻 t0t_0 时对于时间的微商或导数。

但当牛顿引入这一概念时,他称之为流数。

(此处来自田光善先生的经典力学讲义)

· 定义

/Define/

f(x)f(x)(x0δ0,x0+δ0)(x_0 - \delta_0, x_0 + \delta_0)​ 内有定义,x0+Δx(x0δ0,x0+δ0)x_0 + \Delta x \in(x_0 - \delta_0, x_0 + \delta_0) ,若

limΔx0ΔyΔx=limΔx0f(x0+Δx)f(x0)Δx=limΔx0f(x)f(x0)xx0\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}=\lim_{\Delta x \to 0} \frac{f(x) - f(x_0)}{x - x_0}

x0+Δx=xx_0 + \Delta x = x

存在

该极限值称为 y=f(x)y = f(x)x=x0x = x_0 处的导数,记作 f(x0)f(x_0)yx=x0y'|_{x = x_0} , 或

limΔx0ddxx=x0 or ddxf(x)x=x0 or ddxf(x)x=x0\lim_{\Delta x \to 0} \frac{d}{dx} |_{x = x_0} \text{ or } \frac{d}{dx} f(x)|_{x = x_0} \text{ or } \frac{d}{dx} f(x)|_{x = x_0}

其中 ddx\frac{d}{dx} 称之为导数算子

如果有

limΔx0f(x0+Δx)f(x0)Δx=f(x0)\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f(x_0)

y=f(x)y = f(x)x=x0x = x_0 处可导 , f(x0)f(x_0) 称为 y=f(x)y = f(x)x=x0x = x_0 处变化率

否则称 y=f(x)y = f(x)x=x0x = x_0 不可导

导数表示形式:

f(x0)=yx=x0=dydxx=x0=df(x)dxx=x0=ddxf(x)x=x0f'(x_0) = y'|_{x=x_0} = \frac{dy}{dx}|_{x=x_0} = \frac{d f(x)}{dx}|_{x=x_0} = \frac{d}{dx}f(x)|_{x=x_0}

切线方程:

yy0=f(x0)(xx0)y - y_0 = f'(x_0)(x - x_0)

法线方程:

yy0=1f(x0)(xx0)y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)

然后我们可以给出左右导数的概念:

/Define/

右导数:

f(x)f(x)(x0,x0+δ0) (δ0>0)(x_0, x_0 + \delta_0)\ (\delta_0 > 0)有定义,x0+Δx(x0,x0+δ0)x_0 + \Delta x \in (x_0, x_0 + \delta_0)

limΔx0+ΔyΔx=limΔx0+f(x0+Δx)f(x0)Δx=limxx0+f(x)f(x0)xx0 (exist)=f+(x0)\lim_{\Delta x \to 0^+} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}\ (\text{exist}) = f'_+(x_0)

左导数:

f(x)f(x)(x0δ0,x0) (δ0>0)(x_0 - \delta_0, x_0)\ (\delta_0 > 0)有定义,x0+Δx(x0δ0,x0)x_0 + \Delta x \in (x_0 - \delta_0, x_0)

limΔx0ΔyΔx=limΔx0f(x0+Δx)f(x0)Δx=limxx0f(x)f(x0)xx0 (exist)=f(x0)\lim_{\Delta x \to 0^-} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}\ (\text{exist}) = f'_-(x_0)

定理:f(x)f(x)x=x0x = x_0处可导    \ifff(x)f(x)x0x_0f+(x0),f(x0)f'_+(x_0), f'_-(x_0) 存在且相等(证明过程略去)

定理(可导必要条件):若f(x)f(x)x0x_0处可导,则f(x)f(x)x0x_0处连续;反之不成立

/proof/

y=f(x)y = f(x)x0x_0 可导 \Rightarrow limΔx0ΔyΔx=f(x0)\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)

于是limΔx0Δy=limΔx0ΔyΔxΔx=f(x0)0=0\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \cdot \Delta x = f'(x_0) \cdot 0 = 0

y=f(x)y = f(x)x0x_0处连续;反之不成立

· 初等基本函数导数

(1). y=Cy = CCC为常数),求yy^{\prime}

/solution/

xRlimΔx0f(x+Δx)f(x)Δx=limΔx0CCΔx=limΔx00=0=f(x)\forall x\in \mathbb{R}\quad \lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim_{\Delta x \to 0}\frac{C - C}{\Delta x}=\lim_{\Delta x \to 0}0 = 0=f^{\prime}(x)

xR\therefore x\in \mathbb{R}(C)=0(C)^{\prime}=0

(2). y=ax(a>0,a1y = a^{x}(a\gt0,a\neq1为常数),求yy^{\prime}

/solution/

xRlimΔx0ax+ΔxaxΔx=limΔx0axaΔxaxΔx=axlimΔx0aΔx1Δx=axlna=f(x)\forall x\in \mathbb{R}\quad \lim_{\Delta x \to 0}\frac{a^{x+\Delta x}-a^{x}}{\Delta x}=\lim_{\Delta x \to 0}\frac{a^{x}a^{\Delta x}-a^{x}}{\Delta x}=a^{x}\lim_{\Delta x \to 0}\frac{a^{\Delta x}-1}{\Delta x}=a^{x}\ln a=f(x)

xR\therefore x\in \mathbb{R}(ax)=axlna(a^{x})^{\prime}=a^{x}\ln a,特别地,(ex)=ex(e^{x})^{\prime}=e^{x}

(3). y=logax(a>0,a1y=\log_{a}x(a\gt0,a\neq1为常数),求yy^{\prime}

/solution/

x(0,+)\forall x\in(0,+\infty)limΔx0loga(x+Δx)logaxΔx\lim_{\Delta x \to 0}\frac{\log_{a}(x + \Delta x)-\log_{a}x}{\Delta x}(换底公式:logab=logcblogca\log_{a}b = \frac{\log_{c}b}{\log_{c}a}),

=limΔx0loge(1+Δxx)Δx=limΔx0ln(1+Δxx)Δx=limΔx01xln(1+Δxx)Δxx=1xlna=(logax)=\lim_{\Delta x \to 0}\frac{\log_{e}(1+\frac{\Delta x}{x})}{\Delta x}=\lim_{\Delta x \to 0}\frac{\ln(1+\frac{\Delta x}{x})}{\Delta x}=\lim_{\Delta x \to 0}\frac{1}{x}\frac{\ln(1+\frac{\Delta x}{x})}{\frac{\Delta x}{x}}=\frac{1}{x\ln a}=(\log_{a}x)^{\prime}

(lnx)=1x(\ln x)^{\prime}=\frac{1}{x}

(4). y=xa(a0y = x^{a}(a\neq0为常数),求yy^{\prime}

/solution/

设定义域为DD,且x0x\neq0xD\forall x\in D

limΔx0(x+Δx)axaΔx=limΔx0xa(1+Δxx)a1Δx=xalimΔx0aΔxxΔx=xaax=axa1=(xa)\lim_{\Delta x \to 0}\frac{(x+\Delta x)^{a}-x^{a}}{\Delta x}=\lim_{\Delta x \to 0}\frac{x^{a}(1+\frac{\Delta x}{x})^{a}-1}{\Delta x}=x^{a}\lim_{\Delta x \to 0}\frac{a\frac{\Delta x}{x}}{\Delta x}=x^{a}\frac{a}{x}=ax^{a - 1}=(x^{a})^{\prime}

x=0Dx = 0\in D,要使 000^{0} 有意义:

a>0limx0f(x)f(0)x0=limx0xax=limx0xa1\Rightarrow a\gt 0 \quad \lim_{x\to 0}\frac{f(x)-f(0)}{x - 0}=\lim_{x\to 0}\frac{x^{a}}{x}=\lim_{x\to 0}x^{a - 1}

limx0xa={0=f(0)a>11=f(0)a=10<a<1\lim_{x \to 0} x^{a}= \begin{cases} 0 = f(0) & a>1 \\ 1 = f(0) & a = 1 \\ \infty & 0 < a < 1 \end{cases}

a<1a<1: limx01xa=\lim_{x \to 0} \frac{1}{x^{a}}=\infty

x01x^{0} \equiv 1

(5). y=sinxy = \sin x,求 yy^{\prime}

/solution/

limΔx0sin(x+Δx)sinxΔx=limΔx02cos(x+Δx2)sinΔx2Δx=cosx=(sinx)\lim_{\Delta x \to 0} \frac{\sin(x+\Delta x)-\sin x}{\Delta x} =\lim_{\Delta x \to 0} \frac{2\cos(x + \frac{\Delta x}{2})\sin\frac{\Delta x}{2}}{\Delta x} =\cos x = (\sin x)^{\prime}

同理,(cosx)=sinx(\cos x)^{\prime}=-\sin xxRx\in \mathbb{R}

· 导数的四则运算

u(x)u(x)v(x)v(x)均可导,则

  • (u(x)±v(x))=u(x)±v(x)(u(x)\pm v(x))^{\prime}=u^{\prime}(x)\pm v^{\prime}(x)(u±v)=u±v(u\pm v)^{\prime}=u^{\prime}\pm v^{\prime}

  • (uv)=uv+uv(uv)^{\prime}=u^{\prime}v + uv^{\prime}

  • (Cu)=Cu(Cu)^{\prime}=Cu^{\prime}

  • (uv)=uvuvv2(\frac{u}{v})^{\prime}=\frac{u^{\prime}v - uv^{\prime}}{v^{2}} (v0)(v\neq 0)

  • (1v)=vv2(\frac{1}{v})^{\prime}=-\frac{v^{\prime}}{v^{2}}

(tanx)=(sinxcosx)=cosxcosxsinx(sinx)(cosx)2=1cos2x=sec2x(xkπ+π2kZ)(\tan x)^{\prime}=(\frac{\sin x}{\cos x})^{\prime} =\frac{\cos x\cdot\cos x-\sin x\cdot(-\sin x)}{(\cos x)^{2}} =\frac{1}{\cos^{2}x}=\sec^{2}x \quad (x\neq k\pi+\frac{\pi}{2}\quad k\in \mathbb{Z})

同理,(cotx)=csc2x(\cot x)^{\prime}=-\csc^{2}xxkπx\neq k\pikZk\in \mathbb{Z}

(secx)=(1cosx)=sinxcos2x=secxtanx(xkπ+π2kZ)(\sec x)^{\prime}=(\frac{1}{\cos x})^{\prime}=-\frac{-\sin x}{\cos^{2}x}=\sec x\tan x\quad (x\neq k\pi+\frac{\pi}{2}\quad k\in \mathbb{Z})

同理,(cscx)=cscxcotx(\csc x)^{\prime}=-\csc x\cot xxkπx\neq k\pikZk\in \mathbb{Z}

· 反函数求导法则

分析:若y=f(x)y = f(x)的反函数x=φ(y)x = \varphi(y),要求φ(y)\varphi^{\prime}(y)存在,φ(y)=dxdy\varphi^{\prime}(y)=\frac{dx}{dy}f(y)=dydx=1dxdy=1φ(y)f^{\prime}(y)=\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}=\frac{1}{\varphi^{\prime}(y)},要求φ(y)0\varphi^{\prime}(y)\neq 0,且φ\varphi严格单调。

定理(反函数求导法则):

y=f(x)y = f(x)的反函数x=φ(y)x = \varphi(y)严格单调,φ(y)\varphi^{\prime}(y)存在且 φ(y)0\varphi^{\prime}(y)\neq 0,则f(x)f^{\prime}(x)存在且f(x)=1φ(y)f^{\prime}(x)=\frac{1}{\varphi^{\prime}(y)}dydx=1dxdy\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}

/proof/

φ(y)\varphi^{\prime}(y)存在,由导数定义limΔy0ΔxΔy=φ(y)\lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y}=\varphi^{\prime}(y),于是limΔx0ΔyΔx=limΔy01ΔxΔy\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}=\lim_{\Delta y \to 0} \frac{1}{\frac{\Delta x}{\Delta y}}

(由x=φ(y)x = \varphi(y)严格单调,则它的反函数y=f(x)y = f(x)严格单调)

Δx0Δx0xx00xx0f(x)f(x0)f(x)f(x0)0[f(x0+Δx)f(x0)]0Δy0\Delta x\to0 \quad \Delta x\neq0 \Rightarrow x - x_0\neq0\Rightarrow x\neq x_0\\ \Rightarrow f(x)\neq f(x_0)\\ \Rightarrow f(x)-f(x_0)\neq0 \Rightarrow [f(x_0+\Delta x)-f(x_0)]\neq0\\ \Rightarrow \Delta y\neq0

x=φ(y)x = \varphi(y)可导且连续,x=φ(y)x = \varphi(y)严格单调且连续,则其反函数y=f(x)y = f(x)严格单调且连续,有limΔx0Δy=0\lim\limits_{\Delta x\to 0}\Delta y = 0

limΔx0ΔyΔx=limΔy01ΔxΔy=1φ(y)=f(x)\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta y\to 0}\frac{1}{\frac{\Delta x}{\Delta y}}=\frac{1}{\varphi^{\prime}(y)}=f^{\prime}(x),或dydx=1dxdy\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}

· 反三角函数导数

  1. y=arcsinx,x[1,1]y = \arcsin x,x\in[-1,1]

    • 其反函数x=siny,y[π2,π2]x = \sin y,y\in[-\frac{\pi}{2},\frac{\pi}{2}]

    • 因为(siny)=cosy0,y(π2,π2)(\sin y)^{\prime}=\cos y\neq 0,y\in(-\frac{\pi}{2},\frac{\pi}{2}),且x=sinyx = \sin y(π2,π2)(-\frac{\pi}{2},\frac{\pi}{2})上严格单调。

    • x(1,1)x\in(-1,1)时,y=arcsinxy = \arcsin x,且(arcsinx)=1(siny)=1cosy=11sin2y=11x2,x(1,1)(\arcsin x)^{\prime}=\frac{1}{(\sin y)^{\prime}}=\frac{1}{\cos y}=\frac{1}{\sqrt{1 - \sin^{2}y}}=\frac{1}{\sqrt{1 - x^{2}}},x\in(-1,1)

  2. 同理,(arccosx)=11x2,x(1,1)(\arccos x)^{\prime}=-\frac{1}{\sqrt{1 - x^{2}}},x\in(-1,1)

  3. y=arctanx,x(,+)y = \arctan x,x\in(-\infty,+\infty),求yy^{\prime}

    • 它的反函数x=tany,y(π2,π2)x = \tan y,y\in(-\frac{\pi}{2},\frac{\pi}{2})

    • 由于(tany)=sec2y0(\tan y)^{\prime}=\sec^{2}y\neq 0x=tanyx = \tan y严格单调。

    • 所以(arctanx)=1(tany)=1sec2y=11+tan2y=11+x2,xR(\arctan x)^{\prime}=\frac{1}{(\tan y)^{\prime}}=\frac{1}{\sec^{2}y}=\frac{1}{1 + \tan^{2}y}=\frac{1}{1 + x^{2}},x\in\mathbb{R}

  4. 同理,(arccot x)=11+x2,xR(\text{arccot }x)^{\prime}=-\frac{1}{1 + x^{2}},x\in\mathbb{R}

有规律:“正的导数都++”,“余的导数都-”。

· 链式法则

分析:设y=f(u)y = f(u)u=φ(x)u = \varphi(x),若构成复合函数y=f(φ(x))y = f(\varphi(x))

思考:添加什么条件能使y=f(φ(x))y = f(\varphi(x))xx的导数存在,即dydx\frac{dy}{dx}存在。已知dydu\frac{dy}{du}dudx\frac{du}{dx}存在。

猜想:dydx=dydududx\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}

/Theorem/ 链式法则

u=φ(x)u = \varphi(x)xx可导,y=f(u)y = f(u)uu可导,则复合函数y=f(φ(x))y = f(\varphi(x))xx也可导,且dydx=dydududx\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx},此称为链式法则。

· 证明

复合函数求导推导

  • (f(φ(x)))=f(u)φ(x)(f(\varphi(x)))^{\prime}=f^{\prime}(u)\cdot\varphi^{\prime}(x)(其中u=φ(x)u = \varphi(x)),即(f(φ(x)))=f(φ(x))φ(x)(f(\varphi(x)))^{\prime}=f^{\prime}(\varphi(x))\cdot\varphi^{\prime}(x)

  • 对于f(φ(x))f(\varphi(x))的求导过程:f(u)f(φ(x))(f(φ(x)))f(u)\to f(\varphi(x))\to (f(\varphi(x)))^{\prime};对于f(φ(x))f^{\prime}(\varphi(x))的求导过程:f(u)f(u)f(φ(x))f(u)\to f^{\prime}(u)\to f^{\prime}(\varphi(x))

/proof/

因为f(u)f^{\prime}(u)存在,即limΔu0ΔyΔu=f(u)\lim\limits_{\Delta u\to 0}\frac{\Delta y}{\Delta u}=f^{\prime}(u),设limΔx0α=0\lim\limits_{\Delta x\to 0}\alpha = 0ΔyΔu=f(u)+α\frac{\Delta y}{\Delta u}=f^{\prime}(u)+\alpha(当Δu0\Delta u\to 0时),则Δy=f(u)Δu+αΔu\Delta y = f^{\prime}(u)\cdot\Delta u+\alpha\Delta u

所以

limΔx0ΔyΔx=limΔx0f(u)Δu+αΔuΔx=limΔx0[f(u)ΔuΔx+αΔuΔx]\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\to 0}\frac{f^{\prime}(u)\cdot\Delta u+\alpha\Delta u}{\Delta x}=\lim\limits_{\Delta x\to 0}\left[f^{\prime}(u)\frac{\Delta u}{\Delta x}+\alpha\frac{\Delta u}{\Delta x}\right]

补充定义,当Δu=0\Delta u = 0,令α=0\alpha = 0,则

limΔx0ΔyΔx=f(u)φ(x)+limΔx0αlimΔx0ΔuΔx=f(φ(x))φ(x)=(f(φ(x)))\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=f^{\prime}(u)\cdot\varphi^{\prime}(x)+\lim\limits_{\Delta x\to 0}\alpha\cdot\lim\limits_{\Delta x\to 0}\frac{\Delta u}{\Delta x}=f^{\prime}(\varphi(x))\cdot\varphi^{\prime}(x)=(f(\varphi(x)))^{\prime}

y=f(u)y = f(u) 可导,u=φ(v)u=\varphi(v)可导,v=ψ(x)v = \psi(x)可导,则y=[f(φ(ψ(x)))]y=[f(\varphi(\psi(x)))]xx导数存在且dydx=dydududvdvdx\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dv}\cdot\frac{dv}{dx}

/proof/

因为u=φ(ψ(x))u = \varphi(\psi(x))xx可导且dudx=dudvdvdx\frac{du}{dx}=\frac{du}{dv}\cdot\frac{dv}{dx}y=f(u)y = f(u)uu可导,所以dydx=dydududvdvdx\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dv}\cdot\frac{dv}{dx}


· 练习

/example/ 求y=ecos21xy = e^{\cos^{2}\frac{1}{x}}的导数

/solution/

解法一:

y=euy = e^{u}u=v2u = v^{2}v=coswv=\cos ww=1xw=\frac{1}{x}

dydx=dydududvdvdwdwdx=eu2v(sinw)(1x2)=ecos21x2cos1x(sin1x)(1x2)=1x2ecos21xsin2x\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dv}\cdot\frac{dv}{dw}\cdot\frac{dw}{dx} =e^{u}\cdot 2v\cdot(-\sin w)\cdot\left(-\frac{1}{x^{2}}\right)\\ =e^{\cos^{2}\frac{1}{x}}\cdot 2\cos\frac{1}{x}\cdot\left(-\sin\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right) =\frac{1}{x^{2}}e^{\cos^{2}\frac{1}{x}}\cdot\sin\frac{2}{x}

解法二:

y=(ecos21x)=ecos21x(cos21x)=ecos21x2cos1x(cos1x)=ecos21x2cos1x(sin1x)(1x)=ecos21x2cos1x(sin1x)(1x2)\begin{align*} y^{\prime} &=(e^{\cos^{2}\frac{1}{x}})^{\prime}=e^{\cos^{2}\frac{1}{x}}\cdot(\cos^{2}\frac{1}{x})^{\prime} =e^{\cos^{2}\frac{1}{x}}\cdot 2\cos\frac{1}{x}\cdot(\cos\frac{1}{x})^{\prime}\\ &=e^{\cos^{2}\frac{1}{x}}\cdot 2\cos\frac{1}{x}\cdot(-\sin\frac{1}{x})\cdot(\frac{1}{x})^{\prime}\\ &=e^{\cos^{2}\frac{1}{x}}\cdot 2\cos\frac{1}{x}\cdot(-\sin\frac{1}{x})\left(-\frac{1}{x^{2}}\right) \end{align*}

/example/ 求y=1+1+x2+x3y = \sqrt{1+\sqrt{1 + x^{2}+x^{3}}}的导数

/solution/

y=12(1+1+x2+x3)1212(1+x2+x3)1212(x2+x3)12(2x+3x2)\begin{align*} y^{\prime}&=\frac{1}{2}(1+\sqrt{1 + x^{2}+x^{3}})^{-\frac{1}{2}}\cdot\frac{1}{2}(1+\sqrt{x^{2}+x^{3}})^{-\frac{1}{2}}\cdot\frac{1}{2}(x^{2}+x^{3})^{-\frac{1}{2}}\cdot(2x + 3x^{2}) \end{align*}

/example/ 求y=ln(e2xe2x1+1+cos21x+sin21x)y=\ln\left(\frac{e^{2x}}{e^{2x}-1}+\sqrt{1+\cos^{2}\frac{1}{x}+\sin^{2}\frac{1}{x}}\right)的导数

/solution/

y=12[2xln(e2x1)]+2y=112e2x2e2x1+0=e2x1e2xe2x1=11e2x\begin{align*} y&=\frac{1}{2}[2x-\ln(e^{2x}-1)]+\sqrt{2}\\ y^{\prime}&=1-\frac{1}{2}\cdot\frac{e^{2x}\cdot 2}{e^{2x}-1}+0\\ &=\frac{e^{2x}-1 - e^{2x}}{e^{2x}-1}=\frac{1}{1 - e^{2x}} \end{align*}

/example/ 求y=lnxy = \ln|x|的导数

/solution/

x>0x>0 时,(lnx)=(lnx)=1x(\ln|x|)^{\prime}=(\ln x)^{\prime}=\frac{1}{x}

x<0x<0 时,(lnx)=(ln(x))=1x(1)=1x(\ln|x|)^{\prime}=(\ln(-x))^{\prime}=\frac{1}{-x}\cdot(-1)=\frac{1}{x}

所以(lnx)=1x(\ln|x|)^{\prime}=\frac{1}{x}

/example/ 求y=ln3x+1y = \ln|3x + 1|的导数

/solution/

y=13x+13y^{\prime}=\frac{1}{3x + 1}\cdot 3

y=13x+1(3x+1)y^{\prime}=\frac{1}{|3x + 1|}\cdot(3x + 1)^{\prime}(不可取)

/example/ 求y=ln(x+x2+a2)y=\ln(x+\sqrt{x^{2}+a^{2}})a>0a>0)的导数

/solution/

y=1x+x2+a2(1+2x2x2+a2)=1x2+a2\begin{align*} y^{\prime}&=\frac{1}{x+\sqrt{x^{2}+a^{2}}}\cdot(1+\frac{2x}{2\sqrt{x^{2}+a^{2}}})\\ &=\frac{1}{\sqrt{x^{2}+a^{2}}} \end{align*}

并且在第三章我们会学到

1x2+a2dx=ln(x+x2+a2)+C\int\frac{1}{\sqrt{x^{2}+a^{2}}}dx=\ln(x+\sqrt{x^{2}+a^{2}})+C

/example/ 求y=lnx+x2a2y=\ln|x+\sqrt{x^{2}-a^{2}}|a>0a>0)的导数

/solution/

y=1x+x2a2(1+2x2x2a2)=1x2a2\begin{align*} y^{\prime}&=\frac{1}{x+\sqrt{x^{2}-a^{2}}}\cdot(1+\frac{2x}{2\sqrt{x^{2}-a^{2}}})\\ &=\frac{1}{\sqrt{x^{2}-a^{2}}} \end{align*}

且第三章会学到

1x2a2dx=lnx+x2a2+C\int\frac{1}{\sqrt{x^{2}-a^{2}}}dx=\ln|x+\sqrt{x^{2}-a^{2}}|+C

/example/ 求y=xsinxy = x^{\sin x}的导数

/solution/

错误解法y=sinxxsinx1cosxy^{\prime}=\sin x\cdot x^{\sin x - 1}\cdot\cos x(用(xa)=axa1(x^{a})^{\prime}=ax^{a - 1}aa为常数,错误)

正确解法

y=esinxlnxy=esinxlnx(cosxlnx+sinxx)y = e^{\sin x\ln x}\quad \quad y^{\prime}=e^{\sin x\ln x}(\cos x\ln x+\frac{\sin x}{x})

/example/ 求y=ex3y = e^{|x^{3}|}的导数

/solution/

y={ex3x0ex3x>0y=\begin{cases}e^{-x^{3}}&x\leq0\\e^{x^{3}}&x>0\end{cases}

分界点用定义

y={ex3(3x2)x<00x=0ex3(3x2)x>0y^{\prime}=\begin{cases}e^{-x^{3}}(-3x^{2})&x<0\\0&x = 0\\e^{x^{3}}(3x^{2})&x>0\end{cases}

limx0f(x)f(0)x0=limx0ex21x=limx0x2x=0=f(0)limx0f(x)f(0)x0=limx0ex21x=limx0x2x=0=f(0)\lim_{x \to 0}\frac{f(x)-f(0)}{x - 0}=\lim_{x \to 0}\frac{e^{-x^{2}}-1}{x}=\lim_{x \to 0}\frac{-x^{2}}{x}=0 = f^{\prime}(0)\\ \lim_{x \to 0}\frac{f(x)-f(0)}{x - 0}=\lim_{x \to 0}\frac{e^{x^{2}}-1}{x}=\lim_{x \to 0}\frac{x^{2}}{x}=0 = f^{\prime}(0)

f(0)=0\therefore f^{\prime}(0)=0

· 高阶导数

· 定义

/Define/

f(x)f(x)在区间II上的导函数f(x)f^{\prime}(x)II上又可导,即[f(x)][f^{\prime}(x)]^{\prime}存在,记为f(x)f^{\prime\prime}(x)

(y)=y=d2ydx2(y^{\prime})^{\prime}=y^{\prime\prime}=\frac{d^{2}y}{dx^{2}}

y=(y)=dydx=ddxy=ddx(dydx)d2ydx2y^{\prime\prime}=(y^{\prime})^{\prime}=\frac{dy^{\prime}}{dx}=\frac{d}{dx}y^{\prime}=\frac{d}{dx}(\frac{dy}{dx})\triangleq\frac{d^{2}y}{dx^{2}}

dx2=dxdx=(dx)2d(x2)=2xdxd x^{2}=dx\cdot dx=(dx)^{2}\neq d(x^{2}) = 2xdx

称为f(x)f(x)在区间II上的二阶导函数,或简称为二阶导数。

如果f(x)f(x)在区间II上的nn阶导函数存在,记作:

yn=y(n)=f(n)(x)=dnydxn=ddxdn1ydxn1=ddxy(n1)y\underbrace{^{\prime\prime\cdots\prime}}_{n}=y^{(n)}=f^{(n)}(x)=\frac{d^{n}y}{dx^{n}}=\frac{d}{dx}\cdot\frac{d^{n - 1}y}{dx^{n - 1}}=\frac{d}{dx}\cdot y^{(n - 1)}

n>1n>1时,y(n)y^{(n)}称为高阶导数,y(0)=yy^{(0)}=y

· 基本初等函数高阶导数

(1). y=axy = a^{x},求y(n)y^{(n)}

/solution/

y=axlnay^{\prime}=a^{x}\ln a

y=(axlna)=lna(ax)=lnaaxlna=ax(lna)2y^{\prime\prime}=(a^{x}\ln a)^{\prime}=\ln a(a^{x})^{\prime}=\ln a\cdot a^{x}\ln a=a^{x}(\ln a)^{2}

\cdots

y(n)=ax(lna)ny^{(n)}=a^{x}(\ln a)^{n}

(ex)(n)=ex(e^{x})^{(n)}=e^{x}

(2). y=xay = x^{a}a0a\neq0常),求y(n)y^{(n)}

/solution/

y=axa1y^{\prime}=ax^{a - 1}y=a(a1)xa2y^{\prime\prime}=a(a - 1)x^{a - 2}

\cdots

y(n)=a(a1)(a2)(an+1)xany^{(n)}=a(a - 1)(a - 2)\cdots(a - n + 1)x^{a - n}

(xn)(n)=n(n1)(n2)1xnn=n!(x^{n})^{(n)}=n(n - 1)(n - 2)\cdots1\cdot x^{n - n}=n!

约定x0=1x^{0}=1n,mNn,m\in Nm>nm>n(xn)(m)=0(x^{n})^{(m)}=0

(3). y=lnxy = \ln x,求y(n)y^{(n)}

/solution/

解法一:

y=1xy^{\prime}=\frac{1}{x}y=1x2=(1)11x2y^{\prime\prime}=-\frac{1}{x^{2}}=(-1)^{1}\frac{1}{x^{2}}

y(3)=(1)(2)x3y^{(3)}=(-1)(-2)x^{-3}

y(n)=(1)(2)((n1))xn=(1)n1(n1)!xny^{(n)}=(-1)(-2)\cdots(-(n - 1))x^{-n}=(-1)^{n - 1}(n - 1)!x^{-n}

解法二:

(lnx)(n)=[(lnx)](n1)=(x1)(n1)=(1)(11)((1+(n1)))x1(n1)=(1)n1(n1)!xn\begin{align*} (\ln x)^{(n)}&=[(\ln x)^{\prime}]^{(n - 1)}\\ &=(x^{-1})^{(n - 1)}\\ &=(-1)(-1 - 1)\cdots(-(1+(n - 1)))x^{-1-(n - 1)}\\ &=(-1)^{n - 1}\cdot(n - 1)!x^{-n} \end{align*}

同理(1+x)a(n)=a(a1)(an+1)(1+x)an(1 + x)^{a(n)}=a(a - 1)\cdots(a - n + 1)\cdot(1 + x)^{a - n}[ln(1+x)](n)=(1)n1(n1)!(1+x)n[\ln(1 + x)]^{(n)}=(-1)^{n - 1}(n - 1)!(1 + x)^{-n}

(4). y=sinxy = \sin x,求y(n)y^{(n)}

/solution/

y=cosxy=sinxy=cosxy(4)=sinxy^{\prime}=\cos x \quad \quad y^{\prime\prime}=-\sin x\quad \quad y^{\prime\prime\prime}=-\cos x\quad \quad y^{(4)}=\sin x

y=cosx=sin(x+π2)y^{\prime}=\cos x=\sin(x+\frac{\pi}{2})y=sin(x+π2+π2)1y^{\prime\prime}=\sin(x+\frac{\pi}{2}+\frac{\pi}{2})\cdot1

假设n=kn = k时,y(k)=sin(x+kπ2)y^{(k)}=\sin(x + k\frac{\pi}{2})

k=n+1k=n + 1时,

y(k+1)=[sin(x+kπ2)]=sin(x+kπ2+π2)y^{(k + 1)}=[\sin(x + k\frac{\pi}{2})]^{\prime}=\sin(x + k\frac{\pi}{2}+\frac{\pi}{2})

n=k+1n = k + 1成立,由数学归纳法知 y(n)=sin(x+nπ2)y^{(n)}=\sin(x + n\frac{\pi}{2})

同理(cosx)(n)=cos(x+nπ2)(\cos x)^{(n)}=\cos(x + n\frac{\pi}{2})

k0k\neq0,常数,

(sinkx)(n)=knsin(kx+nπ2)(\sin kx)^{(n)}=k^{n}\sin(kx + n\cdot\frac{\pi}{2})

· Leibniz 法则

/Theorem/

(uv)=uv+uv(f1f2f3fn)=i=1kf1f2f3fifn(uv)^{\prime}=u^{\prime}v + uv^{\prime}\\ (f_1f_2f_3\cdots f_n)^{\prime}=\sum_{i=1}^{k}f_1f_2f_3\cdots f_i' \cdots f_n

对于乘积函数的高阶导数有如下推论:

/Theorem/

u(n)u^{(n)}v(n)v^{(n)}均存在,则

(u±v)(n)=u(n)±v(n)(u\pm v)^{(n)}=u^{(n)}\pm v^{(n)}

(Cu)(n)=Cu(n)(Cu)^{(n)}=Cu^{(n)}

(uv)(n)=Cn0u(n)v(0)+Cn1u(n1)v(1)++Cnnu(0)v(n)(uv)^{(n)}=C_{n}^{0}u^{(n)}v^{(0)}+C_{n}^{1}u^{(n - 1)}v^{(1)}+\cdots + C_{n}^{n}u^{(0)}v^{(n)}

补充:

二项式展开:(u+v)n=+Cnkunkvk+(u + v)^{n}=\cdots + C_{n}^{k}u^{n - k}v^{k}+\cdotsCnk+Cnk+1=Cn+1k+1C_{n}^{k}+C_{n}^{k + 1}=C_{n + 1}^{k+1}Cnk=n(n1)(nk+1)k!C_{n}^{k}=\frac{n(n - 1)\cdots(n - k + 1)}{k!}

uuvv中有一项经过几次求导为00,把此项看成11,另一项nn阶导数有公式,把此项看成uu,这时用(uv)(n)(uv)^{(n)}公式。

/example/ y=x2exy = x^{2}e^{x},求y(n)y^{(n)}

/solution/

y(n)=(exx2)(n)=Cn0exx2+Cn1ex(2x)+Cn2ex2=ex(x2+2nx+n(n1))\begin{align*} y^{(n)}&=(e^{x}x^{2})^{(n)}\\ &=C_{n}^{0}e^{x}x^{2}+C_{n}^{1}e^{x}(2x)+C_{n}^{2}e^{x}\cdot2\\ &=e^{x}(x^{2}+2nx + n(n - 1)) \end{align*}

(n2)(n\geqslant2),当n=1n = 1时上式也成立

· 例题

(1). 求y=cos2xy = \cos^{2}xnn阶导数y(n)y^{(n)}

/solution/

y=12(1+cos2x)y(n)=[12(1+cos2x)](n)=12(cos2x)(n)=122ncos(2x+nπ2)=2n1cos(2x+nπ2)\begin{align*} y&=\frac{1}{2}(1 + \cos 2x)\\ y^{(n)}&=\left[\frac{1}{2}(1 + \cos 2x)\right]^{(n)}\\ &=\frac{1}{2}(\cos 2x)^{(n)}\\ &=\frac{1}{2}\cdot2^{n}\cos(2x + n\cdot\frac{\pi}{2})\\ &=2^{n - 1}\cos(2x + n\cdot\frac{\pi}{2}) \end{align*}

所以y(n)=2n1cos(2x+nπ2)y^{(n)} = 2^{n - 1}\cos(2x + n\cdot\frac{\pi}{2})

(2). 求y=1x2+3x+2y=\frac{1}{x^{2}+3x + 2}nn阶导数

/solution/

y=1(x+1)(x+2)=(x+1)1(x+2)1=[(x+1)1(x+2)1](n)=(1)(11)(1(n1))[(x+1)1n(x+2)1n]=(1)nn![(x+1)n1(x+2)n1]\begin{align*} y&=\frac{1}{(x + 1)(x + 2)}=(x + 1)^{-1}(x + 2)^{-1}\\ &=[(x + 1)^{-1}-(x + 2)^{-1}]^{(n)}\\ &=(-1)(-1 - 1)\cdots(-1-(n - 1))[(x + 1)^{-1 - n}-(x + 2)^{-1 - n}]\\ &=(-1)^{n}n![(x + 1)^{-n - 1}-(x + 2)^{-n - 1}] \end{align*}

  1. y=excosxy = e^{x}\cos xnn阶导数

/solution/

y=excosx+ex(sinx)=ex(cosxsinx)=ex2(22cosx22sinx)=ex2(cosπ4cosxsinπ4sinx)=2excos(x+π4)\begin{align*} y^{\prime}&=e^{x}\cos x+e^{x}(-\sin x)\\ &=e^{x}(\cos x-\sin x)\\ &=e^{x}\sqrt{2}(\frac{\sqrt{2}}{2}\cos x-\frac{\sqrt{2}}{2}\sin x)\\ &=e^{x}\sqrt{2}(\cos\frac{\pi}{4}\cos x-\sin\frac{\pi}{4}\sin x)\\ &=\sqrt{2}e^{x}\cos(x+\frac{\pi}{4}) \end{align*}

假设n=kn = k时,y(k)=2kexcos(x+kπ4)y^{(k)}=\sqrt{2}^{k}e^{x}\cos(x + k\cdot\frac{\pi}{4})

n=k+1n = k + 1时,

y(k+1)=(y(k))=2k[excos(x+kπ4)+ex(sin(x+kπ4))]=2k+1ex[cosπ4cos(x+kπ4)sinπ4sin(x+kπ4)]=2k+1excos(x+(k+1)π4)\begin{align*} y^{(k + 1)}&=(y^{(k)})^{\prime}\\ &=\sqrt{2}^{k}[e^{x}\cos(x + k\cdot\frac{\pi}{4})+e^{x}(-\sin(x + k\cdot\frac{\pi}{4}))]\\ &=\sqrt{2}^{k + 1}e^{x}[\cos\frac{\pi}{4}\cos(x + k\cdot\frac{\pi}{4})-\sin\frac{\pi}{4}\sin(x + k\cdot\frac{\pi}{4})]\\ &=\sqrt{2}^{k + 1}e^{x}\cos(x+(k + 1)\cdot\frac{\pi}{4}) \end{align*}

n=k+1n = k + 1时也成立,所以y(n)=2nexcos(x+nπ4)y^{(n)}=\sqrt{2}^{n}e^{x}\cos(x + n\cdot\frac{\pi}{4})

· 方程确定函数的导数

定义:设F(x,y)=0F(x,y)=0DDZZ均为非空实数集,x0D\forall x_{0}\in DF(x0,y)=0F(x_{0},y)=0,如果方程有唯一属于ZZ的解yy,即F(x0,y0)=0F(x_{0},y_{0})=0y0Zy_{0}\in Z,按照函数的定义,得到了DD上的一个函数,记作y=y(x)y = y(x),称为方程F(x,y)=0F(x,y)=0确定的函数。

如何求y=y(x)y = y(x)的导数?

如果从F(x,y)=0F(x,y)=0中解出yyxx的表达式,称y=y(x)y = y(x)为显函数。

/example/ y3x3=1y^{3}-x^{3}=1,确定y=y(x)y = y(x)y=1+x33y=\sqrt[3]{1 + x^{3}}xRx\in\mathbb{R},满足(1+x33)3x31(\sqrt[3]{1 + x^{3}})^{3}-x^{3}\equiv1

如果F(x,y)=0F(x,y)=0确定y=y(x)y = y(x),但是yy不能用xx的显式表达式表示,称为方程确定的隐函数。

yxey=1y-xe^{y}=1确定y=y(x)y = y(x),称为隐函数,有y(x)xey(x)1y(x)-xe^{y(x)}\equiv1xDx\in D

· 隐函数求导

/example/ 已知y(x)xey(x)=1y(x)-xe^{y(x)} = 1,求dydx\frac{dy}{dx}

/solution/

方程两边同时对xx求导:

y(x)ey(x)xey(x)y(x)=0y^{\prime}(x)-e^{y(x)}-xe^{y(x)}\cdot y^{\prime}(x)=0

(1xey(x))y(x)=ey(x)(1 - xe^{y(x)})y^{\prime}(x)=e^{y(x)}

y(x)=ey(x)1xey(x)\therefore y^{\prime}(x)=\frac{e^{y(x)}}{1 - xe^{y(x)}}

以后用以下方法:

/example/ 已知yxey=1y - xe^{y}=1,求dydx\frac{dy}{dx}

/solution/

方法一:由y=y(x)y = y(x),方程两边对xx求导:

yeyxeyy=0y^{\prime}-e^{y}-xe^{y}y^{\prime}=0 (1)

y=ey1xeyy^{\prime}=\frac{e^{y}}{1 - xe^{y}}

dydxx=0\left.\frac{dy}{dx}\right|_{x = 0}:当x0ey=1x - 0\cdot e^{y}=1y=1\Rightarrow y = 1dydxx=0=e\left.\frac{dy}{dx}\right|_{x = 0}=e

在曲线过(0,1)(0,1)处:切线方程:y1=exy - 1 = ex ;法线方程:y1=1exy - 1=-\frac{1}{e}x

d2ydx2\frac{d^{2}y}{dx^{2}}

y=eyy(1xey)ey(0eyxeyy)(1xey)2y^{\prime\prime}=\frac{e^{y}\cdot y^{\prime}(1 - xe^{y})-e^{y}(0 - e^{y}-xe^{y}y^{\prime})}{(1 - xe^{y})^{2}}

化简,把y=ey1xeyy^{\prime}=\frac{e^{y}}{1 - xe^{y}}代入,再化简。


方法二:

方程(1)两边对xx求导:

yeyyeyyxeyyyxeyy=0y^{\prime\prime}-e^{y}\cdot y^{\prime}-e^{y}\cdot y^{\prime}-xe^{y}\cdot y^{\prime}\cdot y^{\prime}-xe^{y}\cdot y^{\prime\prime}=0

代入yy^{\prime},化简,解出yy^{\prime\prime}

d2ydx2x=0\left.\frac{d^{2}y}{dx^{2}}\right|_{x = 0}:把x=0x = 0y=1y = 1y(0)=ey^{\prime}(0)=e代入:ye2e2=0y^{\prime\prime}-e^{2}-e^{2}=0

y=2e2\therefore y^{\prime\prime}=2e^{2}


/example/ y=f(x+y)y = f(x + y),求dydx\frac{dy}{dx},其中ff二阶可导。

/solution/

y=y(x)y = y(x) ,方程两边对xx求导:

y=f(x+y)(1+y)y=f(1+y)y=(1+y)f(1f)y=fy=f1fy^{\prime}=f^{\prime}(x + y)(1 + y^{\prime})\Rightarrow y^{\prime}=f^{\prime}\cdot(1 + y^{\prime})\Rightarrow y^{\prime}=(1 + y^{\prime})f^{\prime} \Rightarrow (1 - f^{\prime})y^{\prime}=f^{\prime} \Rightarrow y^{\prime}=\frac{f^{\prime}}{1 - f^{\prime}}

y=f(1+y)(1f)+ff(1+y)(1f)2y^{\prime\prime}=\frac{f^{\prime\prime}\cdot(1 + y^{\prime})(1 - f^{\prime})+f^{\prime}\cdot f^{\prime\prime}\cdot(1 + y^{\prime})}{(1 - f^{\prime})^{2}}

化简,把y=f1fy^{\prime}=\frac{f^{\prime}}{1 - f^{\prime}}再化简。

· 对数微分法

(1). 求y=xsinxy = x^{\sin x}的导数yy^{\prime}

/solution/

lny=sinxlnx\ln y=\sin x\ln x

方程两边对xx求导:

1yy=cosxlnx+sinxxy=y(cosxlnx+sinxx)\frac{1}{y}y^{\prime}=\cos x\ln x+\frac{\sin x}{x}\\ y^{\prime}=y(\cos x\ln x+\frac{\sin x}{x})

(2). 求y=(lnx)xxlnxy = \frac{(\ln x)^{x}}{x^{\ln x}}的导数 yy^{\prime}

/solution/

lny=ln(lnx)xlnxlnx    lny=xlnlnx(lnx)2\ln y=\ln(\ln x)^{x}-\ln x^{\ln x}\iff \ln y=x\ln\ln x-(\ln x)^{2}

1yy=lnlnx+x1lnx1x2lnxx\frac{1}{y}y^{\prime}=\ln\ln x+x\cdot\frac{1}{\ln x}\cdot\frac{1}{x}-2\frac{\ln x}{x}

(3). 求y=3x+13x22x+115x3y = \frac{\sqrt[3]{3x + 1}\cdot x^{2}}{\sqrt{2x + 1}\cdot\sqrt[3]{1 - 5x}}的导数 yy^{\prime}

/solution/

lny=13ln3x+1+2lnx12ln2x+113ln15x\ln y=\frac{1}{3}\ln|3x + 1|+2\ln|x|-\frac{1}{2}\ln|2x + 1|-\frac{1}{3}\ln|1 - 5x|

方程两边对xx求导:

1yy=1333x+1+21x1222x+113515x\frac{1}{y}y^{\prime}=\frac{1}{3}\cdot\frac{3}{3x + 1}+2\cdot\frac{1}{x}-\frac{1}{2}\cdot\frac{2}{2x + 1}-\frac{1}{3}\cdot\frac{-5}{1 - 5x}

y=y[13x+1+2x12x+1+53(15x)]\therefore y^{\prime}=y[\frac{1}{3x + 1}+\frac{2}{x}-\frac{1}{2x + 1}+\frac{5}{3(1 - 5x)}]

(4). 求y=(ba)x(xa)a(ax)by = (\frac{b}{a})^{x}(\frac{x}{a})^{a}(\frac{a}{x})^{b}a,b>0a,b>0x>0x>0)的导数yy^{\prime}

/solution/

lny=xlnba+a(lnxlna)+b(lnalnx)\ln y=x\ln\frac{b}{a}+a(\ln x-\ln a)+b(\ln a-\ln x)

1yy=lnba+a1xb1x    y=y(lnba+abx)\frac{1}{y}y^{\prime}=\ln\frac{b}{a}+a\cdot\frac{1}{x}-b\cdot\frac{1}{x}\iff y^{\prime}=y(\ln\frac{b}{a}+\frac{a - b}{x})

(5). 求a2x2+b2y2=1a^{2}x^{2}+b^{2}y^{2}=1a,b>0a,b>0常)中yy^{\prime}

/solution/

y=y(x)y = y(x) ,方程两边对xx求导:

a22x+b22yy=0a^{2}\cdot2x + b^{2}\cdot2y\cdot y^{\prime}=0y=a2b2xyy^{\prime}=-\frac{a^{2}}{b^{2}}\cdot\frac{x}{y}

Fragment 2 微分

y=f(x)y = f(x)xx处可导,按定义,limΔx0ΔyΔx=f(x)\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=f^{\prime}(x)

ΔyΔx=f(x)+α, limΔx0α=0Δy=f(x)Δx+αΔx\Leftrightarrow\frac{\Delta y}{\Delta x}=f^{\prime}(x)+\alpha,\ \lim\limits_{\Delta x\to 0}\alpha = 0 \Leftrightarrow\Delta y=f^{\prime}(x)\Delta x+\alpha\Delta x

limΔx0αΔxΔx=0\lim\limits_{\Delta x\to 0}\frac{\alpha\Delta x}{\Delta x}=0,记o(Δx)=αΔxo(\Delta x)=\alpha\Delta xΔx0\Delta x\to 0

Δy=f(x)Δx+o(Δx) (Δx0)Δy=f(x+Δx)f(x)\Leftrightarrow\Delta y=f^{\prime}(x)\Delta x+o(\Delta x)\ (\Delta x\to 0)\quad \quad \Delta y=f(x+\Delta x)-f(x)

Δx|\Delta x|很小时,则o(Δx)|o(\Delta x)|很小

Δyf(x)Δx\therefore\Delta y\approx f^{\prime}(x)\Delta x

于是我们可以试着给出微分的定义

· 定义

/Define/

y=f(x)y = f(x),若Δy=f(x+Δx)f(x)\Delta y=f(x+\Delta x)-f(x)可表示为Δy=AΔx+o(Δx)\Delta y = A\Delta x+o(\Delta x)Δx0\Delta x\to 0),其中AA是与Δx\Delta x无关的量,则称y=f(x)y = f(x)xx处可微,称线性主部AΔxA\Delta xy=f(x)y = f(x)xx处的微分,记作dydy,即dy=AΔxdy = A\Delta x

定理:f(x)f(x)xx处可微的充分必要条件是f(x)f(x)xx处可导,且A=f(x)A = f^{\prime}(x)

/proof/

充分性:前面分析已证。

必要性:由f(x)f(x)xx处可微,由定义知,f(x)=AΔx+o(Δx)f(x)=A\Delta x+o(\Delta x)Δx0\Delta x\to 0),

于是limΔx0ΔyΔx=limΔx0[A+o(Δx)Δx]=A=f(x)\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\to 0}[A+\frac{o(\Delta x)}{\Delta x}]=A = f^{\prime}(x)

f(x)f(x)xx处可导,则A=f(x)A = f^{\prime}(x)。如果y=f(x)y = f(x)xx处可微(xx为自变量),dy=f(x)Δxdy = f^{\prime}(x)\Delta xdf(x)=f(x)Δxd f(x)=f^{\prime}(x)\Delta x

y=xy = xxx处可导x\Leftrightarrow xxx处可微,dx=(x)Δx=Δxdx=(x)^{\prime}\Delta x=\Delta x,自变量的增量等于自变量的微分,

于是dy=f(x)Δx=f(x)dxdy = f^{\prime}(x)\cdot\Delta x=f^{\prime}(x)\cdot dx,因此,dydx=f(x)\frac{dy}{dx}=f^{\prime}(x),故导数又称为微商。

· 四则运算

u(x)u(x)v(x)v(x)均可微,则

  • d(u±v)=du±dvd(u\pm v)=du\pm dv

  • d(Cu)=Cdud(Cu)=Cdu

  • d(uv)=vdu+udvd(uv)=vdu + udv

  • d(uv)=vduudvv2d(\frac{u}{v})=\frac{vdu - udv}{v^{2}}v0v\neq 0

  • d(1v)=dvv2d(\frac{1}{v})=-\frac{dv}{v^{2}}

/proof/

uuvv可微,知uuvv可导uv\Rightarrow\frac{u}{v}可导(v0v\neq 0uv\Rightarrow\frac{u}{v}可微。

d(uv)=(uv)dx=udxvuvdxv2=vduudvv2d(\frac{u}{v})=(\frac{u}{v})^{\prime}dx=\frac{u^{\prime}dx\cdot v - u\cdot v^{\prime}dx}{v^{2}}=\frac{vdu - udv}{v^{2}}

· 微分的一阶形式不变性

y=f(x)y = f(x)可微,且xx为自变量,dy=f(x)Δxdy = f^{\prime}(x)\Delta x,即df(x)=f(x)dxd f(x)=f^{\prime}(x)dx

y=f(u)y = f(u)可微,x=φ(t)x=\varphi(t)可微,y=f(φ(t))\Rightarrow y = f(\varphi(t))可微,tt为自变量。

于是y=[f(φ(t))]dty = [f(\varphi(t))]^{\prime}dtdf(φ(t))=f(φ(t))φ(t)dt=f(φ(t))dφ(t)d f(\varphi(t))=f^{\prime}(\varphi(t))\varphi^{\prime}(t)dt=f^{\prime}(\varphi(t))d\varphi(t)

x=φ(t)x = \varphi(t)df(u)=f(u)du\therefore d f(u)=f^{\prime}(u)du

uu为中间变量时,这个形式仍成立,即,y=f(u)y = f(u)可微,不论uu为自变量还是中间变量,都有df(u)=f(u)dud f(u)=f^{\prime}(u)du,称为微分的一阶形式不变性。

即,若y=f(u)y = f(u)可微,如果dy=g(u)du=df(u)=f(u)dudy = g(u)du = d f(u)=f^{\prime}(u)du,则f(u)=g(u)f^{\prime}(u)=g(u)dydu=g(u)=f(u)\frac{dy}{du}=g(u)=f^{\prime}(u)

· 例题

(1). 求y=e1+x2y = e^{\sqrt{1 + x^{2}}}的微分dydy

/solution/

dy=d(e1+x2)=e1+x2d(1+x2)=e1+x2121+x2d(1+x2)=e1+x2121+x2[d(1)+d(x2)]=e1+x2121+x2d(x2)=e1+x2121+x22xdx\begin{align*} dy&=d(e^{\sqrt{1 + x^{2}}})\\ &=e^{\sqrt{1 + x^{2}}}d(\sqrt{1 + x^{2}})\\ &=e^{\sqrt{1 + x^{2}}}\frac{1}{2\sqrt{1 + x^{2}}}d(1 + x^{2})\\ &=e^{\sqrt{1 + x^{2}}}\frac{1}{2\sqrt{1 + x^{2}}}[d(1)+d(x^{2})]\\ &=e^{\sqrt{1 + x^{2}}}\frac{1}{2\sqrt{1 + x^{2}}}d(x^{2})\\ &=e^{\sqrt{1 + x^{2}}}\frac{1}{2\sqrt{1 + x^{2}}}\cdot 2xdx \end{align*}

y=e1+x2x1+x2y^{\prime}=e^{\sqrt{1 + x^{2}}}\frac{x}{\sqrt{1 + x^{2}}}

(2). 已知dy=e1+x2x1+x2dx(=ydx)dy = e^{\sqrt{1 + x^{2}}}\frac{x}{\sqrt{1 + x^{2}}}dx(=y^{\prime}dx)yy

/solution/

\Leftrightarrow已知y=e1+x2x1+x2y^{\prime}=e^{\sqrt{1 + x^{2}}}\frac{x}{\sqrt{1 + x^{2}}},求yy

dy=e1+x2x1+x2dx=e1+x2121+x2d(x2)=e1+x2121+x2d(1+x2)=e1+x2d(1+x2)=d(e1+x2+C)\begin{align*} dy&=e^{\sqrt{1 + x^{2}}}\frac{x}{\sqrt{1 + x^{2}}}dx\\ &=e^{\sqrt{1 + x^{2}}}\frac{1}{2\sqrt{1 + x^{2}}}d(x^{2})\\ &=e^{\sqrt{1 + x^{2}}}\frac{1}{2\sqrt{1 + x^{2}}}d(1 + x^{2})\\ &=e^{\sqrt{1 + x^{2}}}d(\sqrt{1 + x^{2}})\\ &=d(e^{\sqrt{1 + x^{2}}}+C) \end{align*}

y=e1+x2+C\therefore y = e^{\sqrt{1 + x^{2}}}+C

· 近似值

y=f(x)y = f(x)xx处可微,即

Δy=AΔx+o(Δx)(Δx0)=f(x)Δx+o(Δx)=f(x)dx+o(Δx)=dy+o(Δx)\begin{align*} \Delta y&=A\Delta x+o(\Delta x) (\Delta x\to 0)\\ &=f^{\prime}(x)\Delta x+o(\Delta x)\\ &=f^{\prime}(x)dx+o(\Delta x)\\ &=dy + o(\Delta x) \end{align*}

Δx|\Delta x|很小时,有Δydy\Delta y\approx dy,若f(x)0f^{\prime}(x)\neq 0时,

limΔx0Δydy=limΔx0f(x)Δx+o(Δx)f(x)Δx=limΔx0[1+1f(x)o(Δx)Δx]=1\begin{align*} \lim_{\Delta x\to 0}\frac{\Delta y}{dy}&=\lim_{\Delta x\to 0}\frac{f^{\prime}(x)\Delta x+o(\Delta x)}{f^{\prime}(x)\cdot\Delta x}\\ &=\lim_{\Delta x\to 0}[1+\frac{1}{f^{\prime}(x)}\cdot\frac{o(\Delta x)}{\Delta x}]=1 \end{align*}

Δx0\therefore \Delta x\to 0Δydy\Delta y\sim dy,称dydyΔy\Delta y的最佳近似。

Δy=f(x+Δx)f(x)f(x)Δxf(x+Δx)f(x0)+f(x0)Δx\Delta y = f(x+\Delta x)-f(x)\approx f^{\prime}(x)\Delta x\Rightarrow f(x+\Delta x)\approx f(x_{0})+f^{\prime}(x_{0})\Delta x

x|x|很小时,f(x)f(0+x)=f(0)+f(0)xf(x)\approx f(0 + x)=f(0)+f^{\prime}(0)x

/example/ 求f(x)=(1+x)αf(x)=(1 + x)^{\alpha}的近似值(x=0x = 0处)

/solution/

f(x)=α(1+x)α1f^{\prime}(x)=\alpha(1 + x)^{\alpha - 1}f(0)=1f(0)=1f(0)=αf^{\prime}(0)=\alpha

(1+x)α1+αx(1 + x)^{\alpha}\approx 1+\alpha x

limx0(1+x)α1x=α\lim_{x\to 0}\frac{(1 + x)^{\alpha}-1}{x}=\alpha

x|x|很小时,(1+x)α1xα\frac{(1 + x)^{\alpha}-1}{x}\approx\alpha

(1+x)α1αx(1 + x)^{\alpha}-1\approx\alpha x(1+x)α1+αx(1 + x)^{\alpha}\approx 1+\alpha x
x0x\to 0时,(1+x)α1αx(1 + x)^{\alpha}-1\sim\alpha x

x|x|很小时,(1+x)α1+αx(1 + x)^{\alpha}\approx 1+\alpha x

· 参数方程确定导数

{x=φ(t)y=ψ(t)\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}确定y=y(x)y = y(x),求dydx\frac{dy}{dx}

分析:

dydx=dy/dtdx/dt=ψ(t)φ(t)\frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)}

总结:若φ(t)\varphi^{\prime}(t)ψ(t)\psi^{\prime}(t)存在,且φ(t)0\varphi^{\prime}(t)\neq 0,则dydx=ψ(t)φ(t)\frac{dy}{dx}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)}

或者

dydx=dψ(t)dφ(t)=ψ(t)dtφ(t)dt=ψ(t)φ(t)\frac{dy}{dx}=\frac{d\psi(t)}{d\varphi(t)}=\frac{\psi^{\prime}(t)dt}{\varphi^{\prime}(t)dt}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)}

一元函数微分学的第一部分就此结束。