基础微积分-积分

Fragment 1 不定积分

在实际中,经常要解决:已知F(x)=f(x)F^\prime(x)=f(x)f(x)dx=F(x)dx=dF(x)\Leftrightarrow f(x)dx = F^\prime(x)dx = dF(x),求F(x)F(x)

/Define/

f(x)f(x)在区间II上有定义,若存在一个F(x)F(x),对每一个xIx\in I,都有F(x)=f(x)F^\prime(x)=f(x),称F(x)F(x)f(x)f(x)的一个原函数。

F(x)F(x)f(x)f(x)在区间II上的一个原函数,则F(x)+CF(x)+C也是f(x)f(x)在区间II上的原函数(CC为常数,CRC\in\mathbb{R})。

G(x)\forall G(x)f(x)f(x)在区间II上的任意一个原函数,即xI\forall x\in IG(x)=f(x)G^\prime(x)=f(x)

[G(x)F(x)]=G(x)F(x)=f(x)f(x)=0[G(x)-F(x)]^\prime = G^\prime(x)-F^\prime(x)=f(x)-f(x)=0

G(x)F(x)=CG(x)-F(x)=C(常数),即G(x)=F(x)+CG(x)=F(x)+C

定理:若F(x)F(x)f(x)f(x)在区间II上的一个原函数,则F(x)+CF(x)+CCRC\in\mathbb{R}CC为常数)是f(x)f(x)在区间II上的全体原函数,

称为f(x)f(x)在区间II上的不定积分,记作f(x)dx\int f(x)dx,即f(x)dx=F(x)+C\int f(x)dx = F(x)+CxIx\in ICC为常数,CRC\in\mathbb{R})。

f(x)f(x)称为被积函数,f(x)dxf(x)dx称为被积表达式,xx称为积分变量,\int称为不定积分号。

性质:

  1. (f(x)dx)=ddxf(x)dx=f(x)(\int f(x)dx)^\prime=\frac{d}{dx}\int f(x)dx = f(x)
  2. df(x)dx=f(x)dxd\int f(x)dx = f (x)dx
  3. f(x)dx=ddxf(x)dx=f(x)+C\int f^\prime(x)dx=\int\frac{d}{dx}f(x)dx = f(x)+C
  4. df(x)=f(x)dx=f(x)+C\int df(x)=\int f^\prime(x)dx = f(x)+C,即g(u)du=dg(u)=G(u)+C\int g^\prime(u)du=\int dg(u)=G(u)+C

不定积分的几何意义:

F(x)F(x)f(x)f(x)的原函数,则f(x)dx=F(x)+C\int f(x)dx = F(x)+C,如(f(x)dx)=(F(x)+C)=f(x)(\int f(x)dx)^\prime=(F(x)+C)^\prime = f(x)

基本的不定积分公式:

/Formula/

  1. 0dx=C\int 0dx = C

  2. 1dx=dx=x+C\int 1dx=\int dx = x + C

  3. xadx=1a+1xa+1+C\int x^a dx=\frac{1}{a + 1}x^{a + 1}+Ca1a\neq -1),(1a+1xa+1)=xa(\frac{1}{a + 1}x^{a + 1})^\prime=x^a

  4. x1dx=1xdx=lnx+C\int x^{-1}dx=\int\frac{1}{x}dx=\ln|x|+C(保证定义域不变)

  5. axdx=axlna+C\int a^x dx = \frac{a^x}{\ln a}+C

  6. exdx=ex+C\int e^x dx = e^x + C

  7. cosxdx=sinx+C\int \cos x dx = \sin x + C

  8. sinxdx=cosx+C\int \sin x dx = -\cos x + C

  9. sec2xdx=tanx+C\int \sec^2 x dx = \tan x + C

  10. csc2xdx=cotx+C\int \csc^2 x dx = -\cot x + C

  11. secxtanxdx=secx+C\int \sec x \tan x dx = \sec x + C

  12. cscxcotxdx=cscx+C\int \csc x \cot x dx = -\csc x + C

  13. 11+x2dx=arctanx+C=arccotx+C1\int \frac{1}{1 + x^2} dx = \arctan x + C = -\text{arccot}x + C_1

  14. 11x2dx=arcsinx+C=arccosx+C\int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin x + C = -\arccos x + C

双曲余弦:chx=ex+ex2\text{ch}x = \frac{e^x + e^{-x}}{2} 双曲正弦:shx=exex2\text{sh}x = \frac{e^x - e^{-x}}{2}

ch2xsh2x=1\text{ch}^2x - \text{sh}^2x = 1shx=chx\text{sh}x^\prime = \text{ch}xchx=shx\text{ch}x^\prime = \text{sh}x

  1. shxdx=chx+C\int \text{sh}x dx = \text{ch}x + C
  2. chxdx=shx+C\int \text{ch}x dx = \text{sh}x + C

· 线性运算法则

/Theorem/

f(x)dx\int f(x)dxg(x)dx\int g(x)dx均存在,\forall常数α,β\alpha,\betaα,β\alpha,\beta不同时为00),则[αf(x)+βg(x)]dx\int [\alpha f(x) + \beta g(x)]dx存在,且

[αf(x)+βg(x)]dx=αf(x)dx+βg(x)dx\int [\alpha f(x) + \beta g(x)]dx = \alpha \int f(x)dx + \beta \int g(x)dx

给出证明过程:

/proof/

[αf(x)dx+βg(x)dx]=α[f(x)dx]+β[g(x)dx]=αf(x)+βg(x)[\alpha \int f(x)dx + \beta \int g(x)dx]^\prime = \alpha [\int f(x)dx]^\prime + \beta [\int g(x)dx]^\prime = \alpha f(x) + \beta g(x)

αf(x)dx+βg(x)dx\alpha \int f(x)dx + \beta \int g(x)dxαf(x)+βg(x)\alpha f(x) + \beta g(x)的原函数,且含有加CC,故成立。

/example/

xxxdx=x12x14x18dx=x78dx=815x158+C\int \sqrt{x\sqrt{x\sqrt{x}}}dx = \int x^{\frac{1}{2}}x^{\frac{1}{4}}x^{\frac{1}{8}}dx = \int x^{\frac{7}{8}}dx = \frac{8}{15}x^{\frac{15}{8}} + C

/example/ tan2xdx\int \tan^2 xdx

/solution/

=(sec2x1)dx=sec2xdx1dx=(tanx+C1)(x+C2)=tanxx+C=\int (\sec^2 x - 1)dx = \int \sec^2 xdx - \int 1dx = (\tan x + C_1) - (x + C_2) = \tan x - x + C

/example/ 1sin2xcos2xdx\int \frac{1}{\sin^2 x \cos^2 x}dx

/solution/

=sin2x+cos2xsin2xcos2xdx=(sec2x+csc2x)dx=tanxcotx+C=\int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x}dx = \int (\sec^2 x + \csc^2 x)dx = \tan x - \cot x + C

/example/ x2x2+1dx\int \frac{x^2}{x^2 + 1}dx

/solution/

=x21+1x2+1dx=(11x2+1)dx=xarctanx+C=\int \frac{x^2 - 1 + 1}{x^2 + 1}dx = \int (1 - \frac{1}{x^2 + 1})dx = x - \arctan x + C

· 换元法

· 凑微分 (第一换元法)

首先抛出一个问题:

tanxdx=sinxcosxdx=?\int \tan xdx = \int \frac{\sin x}{\cos x}dx =?

F(u)=f(u)F^\prime(u) = f(u),则[F(φ(x))]=F(φ(x))φ(x)=f(φ(x))φ(x)[F(\varphi(x))]^\prime = F^\prime(\varphi(x))\cdot\varphi^\prime(x) = f(\varphi(x))\cdot\varphi^\prime(x)

g(x)dx\int g(x)dx,如果$g(x)dx = d(?) ,则,则\int g(x)dx =? + C$。

/Claim/

如果g(x)dx=f(φ(x))φ(x)dxg(x)dx = f(\varphi(x))\cdot\varphi^\prime(x)dx,令u=φ(x)u = \varphi(x)

f(φ(x))dφ(x)u=φ(x)f(u)du=dF(u)f(\varphi(x))d\varphi(x)\stackrel{u = \varphi(x)}{\longrightarrow}f(u)du = dF(u)

g(x)dx=F(φ(x))+C\int g(x)dx = F(\varphi(x)) + C,或

g(x)dx=f(φ(x))φ(x)dx=f(φ(x))dφ(x)u=φ(x)f(u)du=F(u)=f(u)F(u)+C=F(φ(x))+C\int g(x)dx = \int f(\varphi(x))\cdot\varphi^\prime(x)dx = \int f(\varphi(x))d\varphi(x)\stackrel{u = \varphi(x)}{\longrightarrow}\int f(u)du\stackrel{F^\prime(u)=f(u)}{=}F(u) + C = F(\varphi(x)) + C

/example/ e2xdx\int e^{2x}dxφ(x)=2x\varphi(x) = 2xf(u)=euf(u) = e^uf(φ(x))=e2xf(\varphi(x)) = e^{2x}

/solution/

=e2x(2x)12dx=12e2x(2x)dx=12e2xd(2x)=u=2x12eudu=12eu+C=12e2x+C=\int e^{2x}\cdot(2x)^\prime\frac{1}{2}dx = \frac{1}{2}\int e^{2x}\cdot(2x)dx = \frac{1}{2}\int e^{2x}d(2x)\stackrel{u = 2x}{=}\frac{1}{2}\int e^udu = \frac{1}{2}e^u + C = \frac{1}{2}e^{2x} + C

我们可以在积分组中加入两个新的公式:

/Formula/

  1. tanxdx=sinxcosxdx=1cosxdcosx=lncosx+C\int \tan xdx = \int \frac{\sin x}{\cos x}dx = -\int \frac{1}{\cos x}d\cos x = -\ln|\cos x| + C

记住一些微分关系式:

  1. dx=1dx=1ad(ax+b)dx = 1\cdot dx = \frac{1}{a}d(ax + b)a0a\neq 0),即dx=1ad(ax+b)dx = \frac{1}{a}d(ax + b)

  2. xdx=12d(x2±a2)xdx = \frac{1}{2}d(x^2\pm a^2)

  3. xdx=12d(a2x2)xdx = -\frac{1}{2}d(a^2 - x^2)

  4. cosxdx=dsinx\cos xdx = d\sin x

  5. sinxdx=dcosx\sin xdx = -d\cos x

  6. 1xdx=dlnx=x>0dlnx\frac{1}{x}dx = d\ln|x|\stackrel{x>0}{=}d\ln x

  7. exdx=dexe^xdx = de^x

如果F(u)=f(u)F^\prime(u) = f(u)

f(ax+b)dx=1af(ax+b)d(ax+b)=1aF(ax+b)+Cf(a2x2)xdx=12f(a2x2)d(a2x2)=12F(a2x2)+C \int f(ax + b)dx = \frac{1}{a}\int f(ax + b)d(ax + b) = \frac{1}{a}F(ax + b) + C\\ \int f(a^2 - x^2)xdx = -\frac{1}{2}\int f(a^2 - x^2)d(a^2 - x^2) = -\frac{1}{2}F(a^2 - x^2) + C

/example/

1a2+x2dx\int \frac{1}{a^2 + x^2}dxa0a\neq 0

=1a211+(xa)2dx=1a11+(xa)2d(xa)=1aarctanxa+C\begin{align*} &=\frac{1}{a^2}\int \frac{1}{1 + (\frac{x}{a})^2}dx\\ &=\frac{1}{a}\int \frac{1}{1 + (\frac{x}{a})^2}d(\frac{x}{a})\\ &=\frac{1}{a}\arctan\frac{x}{a}+C \end{align*}

1a2x2dx\int \frac{1}{\sqrt{a^2 - x^2}}dxa>0a > 0

=11(xa)2d(xa)=arcsinxa+C\begin{align*} &=\int \frac{1}{\sqrt{1 - (\frac{x}{a})^2}}d(\frac{x}{a})\\ &=\arcsin\frac{x}{a}+C \end{align*}

1a2x2dx\int \frac{1}{a^2 - x^2}dxa0a\neq 0

=1(ax)(a+x)dx=12a(1ax+1a+x)dx=12a[1axd(ax)+1a+xd(a+x)]=12a[lnax+lna+x]+C=12alna+xax+C\begin{align*} &=\int \frac{1}{(a - x)(a + x)}dx\\ &=\frac{1}{2a}\int (\frac{1}{a - x}+\frac{1}{a + x})dx\\ &=\frac{1}{2a}[\int \frac{1}{a - x}d(a - x)+\int \frac{1}{a + x}d(a + x)]\\ &=\frac{1}{2a}[-\ln|a - x|+\ln|a + x|]+C\\ &=\frac{1}{2a}\ln|\frac{a + x}{a - x}|+C \end{align*}

secxdx=1cosxdx\int \sec xdx=\int \frac{1}{\cos x}dx

=cosxcos2xdx=11sin2xdsinx=12ln1+sinx1sinx+C=12ln(1+sinx)2cos2x+C=lnsecx+tanx+C\begin{align*} &=\int \frac{\cos x}{\cos^2 x}dx\\ &=\int \frac{1}{1 - \sin^2 x}d\sin x\\ &=\frac{1}{2}\ln|\frac{1 + \sin x}{1 - \sin x}|+C\\ &=\frac{1}{2}\ln|\frac{(1 + \sin x)^2}{\cos^2 x}|+C\\ &=\ln|\sec x+\tan x|+C \end{align*}

解法二:

=secx(secx+tanx)secx+tanxdx=1secx+tanxd(secx+tanx)=lnsecx+tanx+C=\int \frac{\sec x(\sec x + \tan x)}{\sec x + \tan x}dx=\int \frac{1}{\sec x + \tan x}d(\sec x + \tan x)=\ln|\sec x+\tan x|+C

(tanx)=sec2x(\tan x)^\prime=\sec^2 x(secx)=secxtanx(\sec x)^\prime=\sec x\tan x

这些是积分表中的公式

/Formula/

  1. 1a2+x2dx=1aarctanxa+C\int \frac{1}{a^2 + x^2}dx=\frac{1}{a}\arctan\frac{x}{a}+C

  2. 1a2x2dx=arcsinxa+C\int \frac{1}{\sqrt{a^2 - x^2}}dx=\arcsin\frac{x}{a}+C

  3. 1a2x2dx=12alna+xax+C\int \frac{1}{a^2 - x^2}dx=\frac{1}{2a}\ln|\frac{a + x}{a - x}|+C

  4. secxdx=1cosxdx=lnsecx+tanx+C\int \sec xdx=\int \frac{1}{\cos x}dx=\ln|\sec x+\tan x|+C

  5. cscxdx=lncscxcotx+C\int \csc xdx=\ln|\csc x - \cot x|+C

  6. eaxdx(a0)=1aeax+C\int e^{ax}dx(a\neq 0)=\frac{1}{a}e^{ax}+C

  7. cosaxdx=1asinax+C\int \cos axdx=\frac{1}{a}\sin ax + C

  8. sinaxdx=1acosax+C\int \sin axdx=-\frac{1}{a}\cos ax + C

· 变量代换 (第二换元法)

/Claim/

主要用来去根式(φ(t)\varphi(t)可导)

f(x)dxx=φ(t)f(φ(t))dφ(t)=f(φ(t))φ(t)dt=F(t)=f(φ(t))φ(t)dF(t)=dF(φ1(x))f(x)dx\stackrel{x = \varphi(t)}{\longrightarrow}f(\varphi(t))d\varphi(t) =f(\varphi(t))\cdot\varphi^\prime(t)dt\quad \stackrel{F^\prime(t)=f(\varphi(t))\cdot\varphi^\prime(t)}{=} dF(t)=dF(\varphi^{-1}(x))

如果x=φ(t)x = \varphi(t)严格单调,t=φ1(x)t = \varphi^{-1}(x)

f(x)dx=F(φ1(x))+C\therefore \int f(x)dx = F(\varphi^{-1}(x))+C

f(u)dx=x=φ(t)f(φ(t))φ(t)dt\int f(u)dx \xlongequal{x = \varphi(t)} \int f(\varphi(t))\varphi'(t)dt

H(t)=f(φ(t))φ(t)H'(t)=f(\varphi(t))\varphi'(t),则f(φ(t))φ(t)dt=H(t)+C=H(φ1(t))+C\int f(\varphi(t))\varphi'(t)dt = H(t)+C = H(\varphi^{-1}(t)) + C

如果被积函数中有下列根式,不能用前面方法,此时,用变量代换:

/Claim/

a2x2,x=asint,t[π2,π2]a2+x2,x=atant,t[π2,π2]x2a2,x=asect,t[0,π2)(π2,π]\sqrt{a^{2}-x^{2}},\quad x = a\sin t,\quad t\in[-\frac{\pi}{2},\frac{\pi}{2}]\\ \sqrt{a^{2}+x^{2}},\quad x = a\tan t,\quad t\in[-\frac{\pi}{2},\frac{\pi}{2}]\\ \sqrt{x^{2}-a^{2}},\quad x = a\sec t,\quad t\in[0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi]

ax+bcx+dn\sqrt[n]{\frac{ax + b}{cx + d}},令ax+bcx+dn=t\sqrt[n]{\frac{ax + b}{cx + d}}=t,解出x=φ(t)x=\varphi(t)(有理式)

ax+bn\sqrt[n]{ax + b},令其为 tt

/example/ a2x2dx (a>0)\int\sqrt{a^{2}-x^{2}}dx\ (a > 0)

/solution/

L.H.S.=a2a2sin2tacostdt=a2costcostdt=a2cos2tdt=a22(1+cos2t)dt=a22t+a24sin2t+C=a22arcsinxa+a22sintcost+C=a22arcsinxa+a22xaa2x2a+C=a22arcsinxa+12xa2x2+C\begin{align*} \text{L.H.S.}&=\int\sqrt{a^{2}-a^{2}\sin^{2}t}\cdot a\cos tdt \\ &=a^{2}\int|\cos t|\cos tdt \\ &=a^{2}\int\cos^{2}tdt \\ &=\frac{a^{2}}{2}\int(1 + \cos 2t)dt \\ &=\frac{a^{2}}{2}t+\frac{a^{2}}{4}\sin 2t + C \\ &=\frac{a^{2}}{2}\arcsin\frac{x}{a}+\frac{a^{2}}{2}\sin t\cos t + C \\ &=\frac{a^{2}}{2}\arcsin\frac{x}{a}+\frac{a^{2}}{2}\cdot\frac{x}{a}\cdot\frac{\sqrt{a^{2}-x^{2}}}{a}+C \\ &=\frac{a^{2}}{2}\arcsin\frac{x}{a}+\frac{1}{2}x\sqrt{a^{2}-x^{2}}+C\\ \end{align*}

Q.E.D.

/example/ 1x2+a2dx (a>0)\int\frac{1}{\sqrt{x^{2}+a^{2}}}dx\ (a > 0)

/solution/

x=atantx = a\tan t

=asec2ta2tan2t+a2dt=sectdt=lnsect+tant+C=lna2+x2a+xa+C=lna2+x2+xlna+C1=lnx+a2+x2+C1\begin{align*} &=\int\frac{a\sec^{2}t}{\sqrt{a^{2}\tan^{2}t + a^{2}}}dt\\ &=\int\sec tdt\\ &=\ln|\sec t+\tan t|+C\\ &=\ln|\frac{\sqrt{a^{2}+x^{2}}}{a}+\frac{x}{a}|+C\\ &=\ln|\sqrt{a^{2}+x^{2}}+x|-\ln a + C_{1}\\ &=\ln|x + \sqrt{a^{2}+x^{2}}|+C_{1}\\ \end{align*}

这也是积分表的公式之一

/Formula/

  1. 1x2+a2dx=lnx+x2+a2+C\int\frac{1}{\sqrt{x^{2}+a^{2}}}dx=\ln|x+\sqrt{x^{2}+a^{2}}|+C\\

  2. 1x2a2dx=lnx+x2a2+C\int\frac{1}{\sqrt{x^{2}-a^{2}}}dx=\ln|x+\sqrt{x^{2}-a^{2}}|+C\\

一般来说,被积函数是初等函数,则原函数也为初等函数,只有一个表达式。有正有负,不妨设为正。

/example/ 1x3+x2dx\int\frac{1}{\sqrt[3]{x}+\sqrt[2]{x}}dx

/solution/

x6=tx=t6\sqrt[6]{x}=t,x = t^{6}

L.H.S.=6t5t2+t3dt=6t3t+1dt=6t3+11t+1dt=6(t2t+11t+1)dt=6(13t312t2+tln(t+1))+C\begin{align*} \text{L.H.S.}&=\int\frac{6t^{5}}{t^{2}+t^{3}}dt\\ &=6\int\frac{t^{3}}{t + 1}dt\\ &=6\int\frac{t^{3}+1 - 1}{t + 1}dt\\ &=6\int(t^{2}-t + 1-\frac{1}{t + 1})dt\\ &=6(\frac{1}{3}t^{3}-\frac{1}{2}t^{2}+t-\ln(t + 1))+C\\ \end{align*}

最终换回 t=x6t=\sqrt[6]{x}

· 分部积分

如果你会分部积分,就能开始进行研究了.

——于品

有人在不同场合分别问著名的分析学家 Peter Lax 和几何学家 Nirenberg,问分析学中最重要的是什么,他们在不同场合没有沟通过的情况下均回答是分部积分.

另一个有关的小故事是 Harvard 的几何学家 Taubes,在台湾访问时,台湾教授刘和平对他进行了采访,问的是相同的问题,Taubes 回答是两个方面:一是分部积分和 Newton - Leibiniz 公式,二是最大模原理(这会在复变函数中学到).

/Theorem/

u(x),v(x)u(x), v(x) 可导,则

udv=uvvdu+C\int u \, dv = uv - \int v \, du + C

下面我们给出证明:

/proof/

证明1:由 (uv)=uv+uv(uv)' = u'v + uv'

uv=(uv)uvuvdx=[(uv)uv]dxuvdx=(uv)xuvdxudv=uvvdu\Rightarrow uv' = (uv)' - uv\\ \Rightarrow \int uv' \, dx = \int [(uv)' - uv] \, dx\\ \Rightarrow \int uv' \, dx = (uv)x - \int uv \, dx\\ \Rightarrow \int u \, dv = uv - \int v \, du

证明2:

d(uv)=vdu+udvvdu=d(uv)udvvdu=(d(uv)udv)vdu=uvudvd(uv) = v \, du + u \, dv\\ \Rightarrow v \, du = d(uv) - u \, dv\\ \Rightarrow \int v \, du = \int (d(uv) - u \, dv)\\ \Rightarrow \int v \, du = uv - \int u \, dv

公式也可以以如下形式展开:

f(x)dx=u(x)v(x)dx=udv=uvvdu=u(x)v(x)v(x)du(x)\int f(x) \, dx = \int u(x)v'(x) \, dx = \int u \, dv = uv - \int v \, du = u(x)v(x) - \int v(x) \, du(x)

这里我们给出一个最经典的例题:

/example/ xexdx\int xe^x \, dx

/solution/

u=x,v=exu = x, v' = e^x

v=exxexdx=xdex=xexexdx=xexex+C\Rightarrow v = e^x \Rightarrow \int xe^x \, dx = \int x \, de^x = xe^x - \int e^x \, dx = xe^x - e^x + C

下面我们再给出一些特别的模型:

/Claim/

P(x)P(x)xxkk 次多项式, α0\alpha \neq 0 常数

  1. P(x)eαxdx=P(x)d(1αeαx)\int {P(x)}{e^{\alpha x}} \, dx = \int{P(x)} d \left( \frac{1}{\alpha} e^{\alpha x} \right)

    需要 kk 次不定积分

  2. P(x)cosαxdx=P(x)d(1αsinαx)\int P(x) \cos \alpha x \, dx = \int P(x){d} \left( \frac{1}{\alpha} \sin \alpha x \right)

  3. P(x)sinαxdx=P(x)d(1αcosαx)\int P(x) \sin \alpha x \, dx = \int P(x) d \left( -\frac{1}{\alpha} \cos \alpha x \right)

    P(x)P(x)xx 的函数

  4. P(x)f(arcsinx)dx\int P(x) f\left( \arcsin x \right) \, dx

    能凑则凑,若不能凑,

    f(arcsinx)=u,P(x)f(\arcsin x) = u, P(x)vv ,求出 vv

  5. P(x)f(lnx)dx\int P(x)f(\ln x) \, dx

    能凑则凑,若不能凑,令 f(lnx)=u,P(x)=vf(\ln x) = u, P(x) = v ,求出 vv

/example/ (1+x2)cos2xdx\int (1+x^2) \cos 2x \, dx

/solution/

H.L.S.=(1+x2)d(12sin2x)=12(1+x2)sin2x12sin2xd(1+x2)=12(1+x2)sin2x+12xcos2x14sin2x+C\begin{align*} \text{H.L.S.} &= \int (1+x^2) \, d\left(\frac{1}{2} \sin 2x\right)\\ &= \frac{1}{2} (1+x^2) \sin 2x - \frac{1}{2} \int \sin 2x \, d(1+x^2)\\ &= \frac{1}{2} (1+x^2) \sin 2x + \frac{1}{2} x \cos 2x - \frac{1}{4} \sin 2x + C \end{align*}

Q.E.D.

/example/ arctanxxdx\int \frac{\arctan x}{x} \, dx

/solution/

H.L.S.=arctanxlnxlnx1+x2dx=xarctanx12ln(1+x2)\begin{align*} \text{H.L.S.} &= \arctan x \cdot \ln x - \int \frac{\ln x}{1+x^2} \, dx\\ &= x \arctan x - \frac{1}{2} \ln (1+x^2) \end{align*}

/example/

/solution/

H.L.S.=(1x211+x2)arctanxdx=12(arctanx)2+arctanx1+x2d(1x)=12(arctanx)21xarctanx+1x11+x2dx\begin{align*} \text{H.L.S.}&= \int \left(\frac{1}{x^2} - \frac{1}{1+x^2}\right) \arctan x \, dx\\ &= -\frac{1}{2} (\arctan x)^2 + \int \frac{\arctan x}{1+x^2} \, d\left(-\frac{1}{x}\right)\\ &= -\frac{1}{2} (\arctan x)^2 - \frac{1}{x} \arctan x + \int \frac{1}{x} \cdot \frac{1}{1+x^2} \, dx \end{align*}

Q.E.D.

/example/

ln2xxdx=ln2xd(lnx)=13ln3x+C\int \frac{\ln^2 x}{x} \, dx = \int \ln^2 x \, d(\ln x) = \frac{1}{3} \ln^3 x + C

/example/ xlnxdx\int x \ln x \, dx

/solution/

H.L.S.=lnxd(x22)=23x32lnx23x321xdx=23x32lnx49x32+C\begin{align*} \text{H.L.S.}&= \int \ln x \, d\left(\frac{x^2}{2}\right)\\ &= \frac{2}{3} x^{\frac{3}{2}} \ln x - \frac{2}{3} \int x^{\frac{3}{2}} \frac{1}{x} \, dx\\ &= \frac{2}{3} x^{\frac{3}{2}} \ln x - \frac{4}{9} x^{\frac{3}{2}} + C \end{align*}

/example/ arctanxx2(1+x2)dx\int \frac{\arctan x}{x^2(1+x^2)} \, dx

/solution/

H.L.S.=(1x211+x2)arctanxdx=12(arctanx)2+arctanx1+x2d(1x)=12(arctanx)21xarctanx+1x11+x2dx\begin{align*} \text{H.L.S.} &= \int \left(\frac{1}{x^2} - \frac{1}{1+x^2}\right) \arctan x \, dx\\ &= -\frac{1}{2} (\arctan x)^2 + \int \frac{\arctan x}{1+x^2} \, d\left(-\frac{1}{x}\right)\\ &= -\frac{1}{2} (\arctan x)^2 - \frac{1}{x} \arctan x + \int \frac{1}{x} \cdot \frac{1}{1+x^2} \, dx \end{align*}

1x11+x2dx=(1xx1+x2)dx=lnx12ln(1+x2)+C\int \frac{1}{x} \cdot \frac{1}{1+x^2} \, dx = \int \left(\frac{1}{x} - \frac{x}{1+x^2}\right) \, dx = \ln |x| - \frac{1}{2} \ln (1+x^2) + C

原式 = 12(arctanx)21xarctanx+lnx12ln(1+x2)+C-\frac{1}{2} (\arctan x)^2 - \frac{1}{x} \arctan x + \ln |x| - \frac{1}{2} \ln (1+x^2) + C

Q.E.D.