weekly-期中寄

万恶的期中寄结束力!紧接着赶来的就是期末寄(悲)

· 一点数学

先给出来一道闫浩给大一微积分出的PDE的题

f(u,v)f(u,v) 可微,且满足以下条件:

f(u,v)u2f(u,v)v=cos(u+v),g(x,y)=f(x,y2x)\frac{\partial f(u,v)}{\partial u}-2\frac{\partial f(u,v)}{\partial v}=\cos(u+v),\quad g(x,y)=f(x,y-2x)

(1). 求解 g(x,y)x\frac{\partial g(x,y)}{\partial x}

(2). g(0,y)=y2sinyg(0,y)=y^2-\sin y ,求 f(u,v),g(x,y)f(u,v),g(x,y) 表达式

第一问本人做出来的,第二问似乎是做错力(悲)

第一问首先我们不难发现变量代换的关系:u=x,v=y2xu=x,v=y-2x

那么使用链式法则:

gx=fuux+fvvx=fu2fv=cos(u+v)=cos(yx)\frac{\partial g}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}=\frac{\partial f}{\partial u}-2\frac{\partial f}{\partial v}=\cos(u+v)=\cos(y-x)

紧接着是第二问:

f(u,v)=f(x,y2x)=h(x,y)f(u,v)=f(x,y-2x)=h(x,y)

hx=fuux+fvvx=cos(yx)\frac{\partial h}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}=\cos(y-x)

两侧同时对 xx 积分:

h(x,y)=f(x,y2x)=cos(yx)dx=sin(yx)+C(y)h(x,y)=f(x,y-2x)=\int\cos(y-x)\text{d}x=-\sin(y-x)+C(y)

f(u,v)=h(u,v+2u)=sin(u+v)+C(v+2u)f(u,v)=h(u,v+2u)=-\sin(u+v)+C(v+2u)

我们发现到这里就求不出来 C(y)C(y) 的具体表达式,但是还有个条件没有用

g(0,y)=y2sinyg(x,y)=f(x,y2x)f(0,y)=y2sinyg(0,y)=y^2-\sin y,g(x,y)=f(x,y-2x)\Rightarrow f(0,y)=y^2-\sin y

然后将 uu 赋值为 00

f(0,v)=sinv+C(v)=v2sinvC(v)=v2f(0,v)=-\sin v+C(v)=v^2-\sin v\Rightarrow C(v)=v^2

f(u,v)=sin(u+v)+(v+2u)2f(u,v)=-\sin(u+v)+(v+2u)^2

g(x,y)=y2sin(yx)g(x,y)=y^2-\sin (y-x)

Q.E.D.